STAT40150 Multivariate Analysis Assignment 1

Fanahan McSweeney - 20203868

February 27, 2021

Install / Load Packages

Note that code is included in the chunk below to install all packages used in the file, but these commands
have been commented out. Please uncomment commands related to any packages that have not yet been
installed.

Install the relevant packages (UNCOMMENT THESE IF PACKAGES ARE NOT INSTALLED!)
install.packages ("knitr")

install.packages("corrplot™)

install.packages("car")

install.packages("cluster")

install.packages("e1071")

install.packages ("MASS")

install.packages("class")

H R R R R R R

Load relevant libraries
library(knitr)
library(corrplot)

corrplot 0.84 loaded

library(car)

Loading required package: carData

library(cluster)
library(e1071)
library (MASS)
library(class)

Data Preparation

After loading the Milk MIR_ Traits data.csv file, some initial tidy up of the data must be done before
performing analysis.

Firstly, a single observation, chosen at random, is dropped from the data set. From inspecting the columns
in the input data, there are several recorded variables that are not useful for the purpose of this project, and
so these can be dropped from the data before proceeding.

The str function can be used to look at the structure of a given data frame and give a quick insight into the
data contained in each of its columns. Below, the first 18 columns of the reduced data frame are inspected,
which include all protein and technological traits for the data.

Load data from .csv file (in "Data" folder within working directory)
rawdata <- read.csv("Data/Milk_MIR_Traits_data.csv")

set seed to my student no.

set.seed(20203868)

Generate random integer between 1 and number of rTows in the data set
drop_index <- sample(nrow(rawdata), 1)

Remove row of the randomly generated index from the data

rawdata <- rawdatal[-drop_index,]

Remove any columns that will not be used during the analysis etc.
Save in a new data frame called "milkdata”
milkdata <- rawdatal[-c(5:6, 14:39, 41:43, 46, 51)]

Look at the structure of the data
str(milkdatal[1:18])

’data.frame’: 430 obs. of 18 variables:

$ Breed : chr "Hol Fri" "Hol Fri" "JEX-" "FRX-"
$ Date_of_sampling : chr "20/08/2013" "20/08/2013" "20/08/2013" "20/08/2013"
§ Parity :int 5554522212 ...

¢ Milking_Time pint 1111111111 ...

$ kappa_casein :num 5.31 6.11 7.06 8.29 7.3 ...

$ alpha_s2_casein : num 3.13 3.723 0.657 6.146 4.022 ...
$ alpha_sl_casein :num 12.1 12.6 12.5 21.8 16.8 ...

$ beta_casein :num 9.71 11.08 11.49 17.22 14.35 ...
¢ alpha_lactalbumin :num 0.933 0.916 1.074 1.254 0.983 ...
§ beta_lactoglobulin_a: num 2.096 0.903 2.116 3.065 2.259 ...
$ beta_lactoglobulin_b: num 2.46 5.17 1.36 0 2.99 ...

$ Casein_micelle_size : num 159 146 125 243 146 ...

§ Heat_stability :num 31 31 31 9.95 21.6 ...

$ pH : num NA 6.66 6.63 6.6 6.55 ...

$ RCT : num NA NA NA NA NA NA NA NA NA NA ...
$ k20 : num NA NA NA NA NA NA NA NA NA NA ...
$ a30 : num NA NA NA NA NA NA NA NA NA NA ...
$ a60 : num NA NA NA NA NA NA NA NA NA NA ...

There are a number of categorical covariates recorded in the given data set. For this project, the following
categorical variables will be considered:

e Breeds

e Parity

e Date_of sampling
o Milking Time

For each of these variables, there is some level of tidy up required.

Firstly, looking at a frequency table of the Breeds data shows 11 different categories recorded. However,
some of these categories appear to overlap, for example hox, HOX, and HOX- are all likely representative of
a Holstein Cross breed.

Below, I have grouped any of the categories that I judged to be identical, and I have renamed each category
appropriately. I have also converted the column type to a factor. A frequency table of the updated Breed
categories is shown below.

Replace all Breeds containing "FRX" with "FriesianX"

milkdata$Breed [sapply("frx", grepl, milkdata$Breed, ignore.case = TRUE)] <- "FriesianX"
Replace all Breeds containing "hoz" with "HolsteinX"

milkdata$Breed [sapply("hox", grepl, milkdata$Breed, ignore.case = TRUE)] <- "HolsteinX"
Replace all Breeds containing "jex" with "JerseyX"

milkdata$Breed[sapply("jex", grepl, milkdata$Breed, ignore.case = TRUE)] <- "JerseyX"

Replace all Breeds equalling "Hol Fri" with "HolsteinFriesian"

milkdata$Breed [milkdata$Breed=="Hol Fri"] <- "HolsteinFriesian'

Replace all Breeds equalling "je" with "Jersey"

milkdata$Breed[milkdata$Breed=="JE"] <- "Jersey"

Replace all Breeds equalling "MO" with "Montbelliarde"
milkdata$Breed[milkdata$Breed=="M0"] <- "Montbelliarde"

Replace all Breeds equalling "NR" with "NorwegianRed"
milkdata$Breed[milkdata$Breed=="NR"] <- "NorwegianRed"

Replace unfilled entries for Breeds with "Unknown"
milkdata$Breed[milkdata$Breed==""] <- "Unknown"

Make Breed column a factor
milkdata$Breed <- as.factor(milkdata$Breed)

View frequency table for Breed data
kable(t(table(milkdata$Breed)), align = 'c')

FriesianX HolsteinFriesian HolsteinX Jersey JerseyX Montbelliarde NorwegianRed Unknown
18 296 14 60 28 1 12 1

The Parity column contains the number of different times that the cow has had offspring for each observation.
Values in the data set range from 1 to 11, but the frequency of values greater than 5 is significantly lower
than values less than 6.

Therefore, I decided to group Parity values greater than 5 into a single category called 6+, and I have again
changed the column’s data type to a factor.

Set all wvalues of Parity greater than 5 to "6+"
milkdata$Parity[milkdata$Parity > 5] <- "6+"

make Parity column a factor

milkdata$Parity <- as.factor(milkdata$Parity)

View frequency table for Parity data
kable(t(table(milkdata$Parity)), 'c')

1 2 3 4 5 6+
145 115 73 40 30 26

The Date of sampling column contains the date which each observation was recorded. Various different
dates are included in the data set, so I have chosen to group dates by month.

The code below identifies the month in the date for each observation, and replaces it with just the number
of the month. Again, this has been converted to a factor, and a frequency table of the updated column is
shown below.

Create wvector of strings representing month numbers
months <_ C(”Ol”, I|02|l’ IIOSII’ IIO4II’ IIOSII’ I|06|l’ llO?ll, IIOSII’ |l09ll’ I|10ll’ llllll, |I12I|)

Loop through each month, replace date with Month
for(MM in months) {

milkdata$Date_of _sampling[sapply(pasteO("/", MM, "/"), grepl, milkdata$Date_of_sampling)] <- MM
}

make Date_of_sampling column a factor
milkdata$Date_of_sampling <- as.factor(milkdata$Date_of_sampling)

View frequency table for Date_of_sampling data
kable(t(table(milkdata$Date_of_sampling)), L)

01 02 03 04 06 07 08 09 10
70 26 80 39 47 24 64 56 24

The final categorical variable that will be considered in the data frame is Milking Time. This is a record of
whether a milk sample was taken in the morning or in the evening, with values of 1 and 2 corresponding to
morning and evening respectively.

For readability, I have replaced the values of 1 and 2 with Morning and FEvening, and I have changed the

type of the column to a factor.

Set Milking time values of 1 to morning, 2 to evening
milkdata$Milking Time[milkdata$Milking Time == 1] <- "Morning"
milkdata$Milking Time [milkdata$Milking Time == 2] <- "Evening"

make Milking Time column a factor
milkdata$Milking Time <- as.factor(milkdata$Milking Time)

View frequency table for MilkingTime data

kable(t(table(milkdata$Milking Time)), align = 'c')

Evening Morning

136 293

Barplots of these 4 categorical traits are plotted below, to show the frequency of each category for each trait.

set plot window to 2 rows = 2 columns
par (nfrow=c(2,2))

vector of labels for barplots

cats_vec <- c("Breeds", "Month of Sampling", "Parity", "Milking Time")
vector for label orientation

las_vec <- c(2,1,1,1)

loop through each categorical trait
for(i in 1:4){
barplot(table(milkdatal,i]), las=las_vec[i], ylab = "Frequency", xlab = cats_vec[i],
main = paste("Barplot of", cats_vec[i], "Frequency"), col = heat.colors(4)[i], cex.names = 0.

b
Barplot of Breeds Frequency Barplot of Month of Sampling Frequency

- -, 80
(8] (8]
S 200 c 60
S S 40
S 100 g 20 I
L 0 =] —--_—_ L 0 . . .

x < X 5 X @ o c

E § 5 2 3 § & B 0L 02 03 04 06 07 08 09 10

: % - Breeds § § Month of Sampling

T
Barplot of Parity Frequency Barplot of Milking Time Frequency

? 120 ? 200
S 80 S
g g 100
o 40 |_| o
o o

1 2 3 4 5 6+ Evening Morning

Parity Milking Time

1 (a) Protein Traits Analysis
kappa__casein / alpha_sl_ casein / alpha_s2_ casein / beta__casein

There are 7 protein traits recorded for each milk sample in the given data. A correlation plot can be used to
quickly visualise the strength of the correlation between each variable before looking further into the data.

From the plot, it appears that the first 4 variables (kappa_ casein, alpha_s1_casein, alpha_s2_casein,
beta__casein) are all relatively strongly positively correlated with one another.

Create data frame of protein traits
milk_prot <- milkdatal[,5:11]

Create correlation plot for all protein tratits
milk_prot_cor <- cor(na.omit(milk_prot))
corrplot.mixed(milk_prot_cor, tl.cex=0.4, tl.col="black", main = " Correlation Plot of Protein

Correlation Plot of Protein Traits

kappa_casein
0.8
06 alpha_s2_casein ‘ ‘ 06
‘ - 0.4

LI
0.77 | 0.63 | 0.88 | tewmcasen ‘ - 0

—0.2

O . 7 9 O R 6 5 alpha_s1_casein

alpha_lactalbumin

0.4

O . 5 3 O . 5 6 O . 4 7 eta_lactoglobulin_a _0 . 6

-0.8

eta_lactoglobulin_b

From inspecting the data, a number of protein values have not been recorded for various observations. I have
decided to remove all observations containing NA values for the protein traits using the na.omit function
before proceeding with the analysis of the protein traits. Due to the relatively large number of protein traits
to analyse, I will first look at the first 4 protein traits, and will later look at the remaining 3 protein traits
separately.

Boxplots are a useful tool for visualising the distribution of numerical data, displaying the median, first and
third quartiles for the data, while also highlighting any data points that could be considered as outliers.

There are numerous ways that we can classify data points as outliers, such as points with values outside
3 standard deviations from the mean of the data, or points that are a specified distance above the third
quartile or below the first quartile of the data.

For this project, I have chosen to look at data points that are greater than 3 times the interquartile range
above the third quartile, and 3 times the interquartile range below the first quartile, when considering values
that may be genuine outliers in the data that should be considered for removal. In the boxplots below, I
have defined the whiskers to extend this length, so that any data points that could be considered as extreme
outliers can easily be identified on the plots.

The first boxplot below shows the distribution of the first 4 protein traits in their original scale. For each

trait there are 2 points shown outside the range of the whiskers, which could be considered extreme outliers.

Drop rows that include NAs
milk_prot <- na.omit(milk_prot)
rownames (milk_prot) <- 1l:nrow(milk_prot)

bozplot

boxplot(milk_prot[,1:4], 3, D 0.5, heat.colors(4), "Boxplots of Protein Tr

Boxplots of Protein Traits
(Whiskers extend 3 x IQR)

O

40 —

O

30 —

20 —f

Measured Value

10 — : 8

|

alpha_s1_casein }~ --=-- |:| --=-=--

beta_casein

kappa_casein
alpha_s2_casein —

To determine exactly which observations these outliers are from, a different boxplot function from the car
library can be used to identify the index of these observations.

Also, it can be difficult at times to compare different distributions on the same boxplot if their ranges and
distributions differ significantly, so it can be useful to plot the standardised data distributions on the boxplot.
As a result, each trait in the boxplot below has a mean value of 0 and standard deviation value of 1, and
the distributions all have a similar scale.

Boxplot of first 4 protein tratits
bpl <- Boxplot(scale(milk_prot[,1:4]), S RN

Standardised Value

-2

list(0.5,
2,

"Boxplots of Standardised Protein Traits\n(Whiskers extend 3 x IQR)",

Boxplots of Standardised Protein Traits
(Whiskers extend 3 x IQR)

0.5,

”avoid”, ”red”),
heat.colors(4),

3,

69 %
69 %
%69
%
1%
* 69 70
79
*
- 1 e — —_—
! - | |
! | 1 1
! | 1 1
! | 1 1
! | 1 1
L L
L 1
T I] 1
| |) \
| |) \
| |) \
_ |) \
_
—_ !
_—
c =4 c c
3 3 3 3
] @ I «
° ° ° o
g o % s
@
g o o «
X < =
o o
© ©

"Standardised V.

From the boxplot above, observations 69, 71 and 79 all appear to be outliers considering the values recorded
for some of the protein traits.

To further visualise these outliers, we can look at pairs plots of the first 4 protein traits, plotting the
relationship between each pair of traits. In the pairs plots below, the 3 outliers identified on the boxplot are
highlighted in red. Again, these observations appear to be legitimate outliers, clearly deviating significantly
from the bulk of the data in most of the plots below.

get indices of outliers
inds <- unique(as.numeric(bpl))

create vector of 1s and 2s corresponding to outliers
colvec <- rep(1, nrow(milk_prot))

colvec[inds] <- 2

Pairs plot of the first 4 protein tratits
pairs(milk_prot[,1:4], c(".", "x")[colvec], c("lightblue", "red") [colvec], "Pairs Plot of |

Pairs Plot of Protein Traits

2 4 6 8 10 5 15 25 35
| | | | - | - [N I [N [N | -
* * * : n
. —
kappa_casein x x x B
~
S‘ n * * * * * *
7] . alpha_s2_casein . .
~ -
* * . * - (CYJ)
* | |alpha_s1_casein x B
. O
-
o _| 3 * *
™ —
g * * - beta_casein
n 4
I I I I I I I I
5 10 15 20 10 20 30 40

Without any further knowledge available regarding why these observations have such extreme values for some
of the recorded protein traits, I have decided to omit them from the data when calculating the summary
statistics for these traits.

Below, an updated pairs plot is shown with outlier observations removed to get a better visualisation of
relationships between the traits, and a table of summary statistics for these traits with the identified outliers
removed. This includes a Shapiro Wilk W test statistic value for each variable, which is a method of
measuring how close a distribution is to normality.

Updated Pairs plot of the first 4 protein traits
pairs(milk_prot[-inds,1:4], oy "lightblue", "Pairs Plot of Protein Traits")

Pairs Plot of Protein Traits

1 2 3 4 5 6 5 10 15 20
| | | | | | | | |
kappa_casein N
o
o alpha_s2_casein
-
alpha_sl1 casein B
o0 _]
— .
_ beta casein
0o

! ! ! ! !
2 4 6 8 10 12

get summary stats of reduced dataset

sumtabl <- as.data.frame(apply(milk_prot[-inds, 1:4], 2, summary))

get stand.dev. wvalues for reduced dataset
sdsl <-apply(milk_prot[-inds, 1:4], 2, sd)

10

15

get shapiro wilkes test statistic values for reduced dataset (normality test)

swl <- NULL

loop through indices of relevant columns

for(i in 1:4) {

calculate W value for the current column
swl <- c(shapiro.test(milk_prot[-inds,i])$statistic, swl)

}

bind stand. deviations and shapiro wilk W values to summary data frame
sumtabl <- round(rbind(sumtabl, sdsl, swil), 3)
rownames (sumtabl) [7:8] <- c("St.Dev", "W")

print table of summary statistics
kable (sumtabl, ’gl)

kappa_ casein alpha_s2 casein

alpha_ sl casein

beta_ casein

Min. 1.357
1st Qu. 4.716
Median 5.472
Mean 5.626
3rd Qu. 6.641
Max. 11.671

0.576
2.928
3.357
3.406
3.938
6.146

10

3.377
11.825
13.418
13.626
15.373
23.759

2.559
11.057
12.457
12.443
14.019
19.833

kappa_ casein alpha_s2 casein alpha_ sl casein beta_ casein

St.Dev 1.513 0.946 2.942 2.593
W 0.964 0.976 0.976 0.987

11

We can also visualise the distributions of each of the traits using histograms as shown below. The outliers
identified above have been omitted when creating these plots.

set plot window to 2 rows = 2 columns
par(c(2,2))

loop through each trait

for(i in 1:4){
Plot probability density histogram of selected tratt

hist(milk_prot[-inds,i], FALSE, 20,
pasteO("Histogram and Density Plot of\n", names(milk_prot) [i]),

names (milk_prot) [i], heat.colors(4)[i])

plot density plot of selected trait
lines(density(milk_prot[-inds,i]))

}

Histogram and Density Plot of

Histogram and Density Plot of
alpha_s2_casein

kappa_casein

Density
0.0 0.3 0.6

Density
0.0 0.2

2 4 6 8 10 12 1 2 3 4
kappa_casein alpha_s2_casein

Histogram and Density Plot of Histogram and Density Plot of

alpha_s1 casein beta_casein
9] 0 N
> ; N 2 - 7‘ N
= o — = .
7] A = 2 o /
) (&)
° 3 _»r47Z LF& ° 3 ﬂ_,z{
o o
P | T T | P | T T |
5 10 15 20 5 10 15 20
beta casein

alpha_sl1 casein

12

alpha_ lactalbumin / beta_ lactoglobulin__a / beta_ lactoglobulin_ b

The boxplot below shows the distribution of the final 3 protein traits in their original scale. For the al-
pha__lactalbumin trait in particular, there are a number of points shown outside the range of the whiskers,
highlighting them as potential extreme outliers in the data.

bozplot
boxplot(milk_prot[,5:7], 3, 2, 0.5, heat.colors(4), "Boxplots of Protein Tr
Boxplots of Protein Traits
(Whiskers extend 3 x IQR)
@]
10 —
O 1
0 o- ;
E O 1
('U - 1
> I :
ho} 6 — | |
Qo : |
= : :
(U 4 — @ 1 1
(O] O : 1
= (@]
2] 1
EEE— ' ,
o — —_— — .
[
£ :I ;I
= il il

13

Again, we can plot the observation index of the identified outliers on the boxplot, and we can also standardise
each of the traits to make the distributions of each trait easier to visualise when shown side by side on the

same plot.

Boxzplot of first 4 protein tratits
bp2 <- Boxplot(scale(milk_prot[,5:7]1), MM 3,
list(0.5, "avoid", "red"),
2, 0.5, heat.colors(4),
"Boxplots of Standardised Protein Traits\n(Whiskers extend 3 x IQR)", "Standardised V

Boxplots of Standardised Protein Traits
(Whiskers extend 3 x IQR)

2%
10 —
I} 29 %
-] 8
S
o 6 — *%
o
R
o 4 — %176 _—
© 5? !
- !
2 ' '
11 ! 1
9 2 — 9* | '
! 1
7)) . X
1 1 I
1
0 E—
1
" T
—— -
——
_2 |
= © a
E g g
2 2 2
£ ° °
g g g
g 8 k|
5 o o
|7 |5
Qo Qo

14

From the boxplot above, 6 different observations were identified as potential outliers considering the values
recorded for some of the protein traits.

To further visualise these outliers, we can look at pairs plots of the final 3 protein traits, plotting the
relationship between each pair of traits. In the pairs plots below, the outliers identified on the boxplot are
highlighted in red. Again, these appear to be legitimate outliers, clearly deviating significantly from the bulk
of the data in some of the plots below.

get indices of outliers
inds2 <- unique(as.numeric(bp2))

create vector of 1s and 2s corresponding to outliers
colvec <- rep(1, nrow(milk_prot))

colvec[inds2] <- 2

Pairs plot of the first 4 protein tratits
pairs(milk_prot[,5:7], c(m.", "x")[colvec], c("lightblue", "red") [colvec],

Pairs Plot of Protein Traits

alpha_lactalbumin

*
*
*
*
I
0 2 4 6 8

w —
© beta lactoglobulin_a
< * *
N N & A
o * *
- ©
* * . - ©
beta_lactoglobulin_b | _
. & * o % .
— O
I I I I I I I I I I
0 2 4 6 8 0 2 4 6 8 10

Aside from the outliers, another thing that can be observed from the pairs plots is that several observations in
the data have a beta_ lactoglobulin__b value of exactly zero. While this seems unlikely, there are a significant
number of observations with beta_ lactoglobulin__b values that are very close to zero, so there is a possibility
that the values measured were very close to zero and were recorded as such. Without further knowledge
available, I have chosen not to exclude these observations from the analysis.

Conversely, without any further knowledge available on the identified outliers for these protein traits, I have
decided to omit them from the data when calculating the summary statistics for these traits.

Updated Pairs plot of the first 4 protein traits

pairs(milk_prot[-inds2,5:7], o, "lightblue", "Pairs Plot of Protein Traits")

15

"Pairs Plot of

]

Pairs Plot of Protein Traits

alpha_lactalbumin

7 beta lactoglobulin_a

beta_lactoglobulin_b [

T T T T T T T T T
0.5 1.0 15 2.0 0 2 4 6 8 10

get summary stats of reduced dataset
sumtab2 <- as.data.frame(apply(milk_prot[-inds2, 5:7], 2, summary))

get stand.dev. wvalues for reduced dataset
sds2 <-apply(milk_prot[-inds2, 5:7], 2, sd)

15

0.5

0 2 4 6 8

get shapiro wilkes test statistic values for reduced dataset (normality test)

sw2 <- NULL
loop through indices of relevant columns
for(i in 5:7) {
calculate W value for the current column
sw2 <- c(shapiro.test(milk_prot[-inds2,i])$statistic, sw2)
}

bind stand. deviations and shapiro wilk W values to summary data frame
sumtab2 <- rbind(sumtab2, sds2, sw2)
rownames (sumtab2) [7:8] <- c("St.Dev", "W")

print table of summary statistics

kable (sumtab?2, 'c")
alpha_ lactalbumin beta_lactoglobulin_a beta_lactoglobulin_b
Min. 0.2647158 0.3640380 0.0000000
1st Qu. 0.9223530 1.5513175 0.9641435
Median 1.0799210 2.2379770 2.4078680
Mean 1.1225908 2.4564317 2.4421538
3rd Qu. 1.2561535 3.2785950 3.4535215
Max. 2.1724260 7.0960000 9.7015400

16

alpha_ lactalbumin beta_lactoglobulin_a beta_lactoglobulin_b

St.Dev 0.3020304 1.2913684 1.7563867
W 0.9518432 0.9473425 0.9638243

17

We can also visualise the distributions of each of the traits using histograms as shown below. The outliers
identified above have been omitted when creating these plots.

set plot window to 2 rows = 2 columns
par (mfrow=c(2,2))

loop through each trait
for(i in 5:7){
Plot probability density histogram of selected tratt
hist(milk_prot[-inds2, i], freq = FALSE, breaks = 20,
main = pasteO("Histogram and Density Plot of\n", names(milk_prot) [i]),
xlab = names(milk_prot) [i], col = heat.colors(3) [i-4])

plot density plot of selected trait
lines(density(milk_prot[-inds2, i]))

}
Histogram and Density Plot of Histogram and Density Plot of
alpha_lactalbumin beta_lactoglobulin_a
<
o
2 o 2
(m) (a)
= =
© | | |] o
0.5 1.0 1.5 2.0 0 2 4 6
alpha_lactalbumin beta_lactoglobulin_a
Histogram and Density Plot of
beta lactoglobulin_b
2 il pR
N N
% il M
S o JUI
S T T T T | |

0 2 4 6 8 10

beta_lactoglobulin_b

18

1 (b) Technological Traits Analysis

Casein__micelle_size / Heat_ stability / pH

There are 7 technological traits recorded for each milk sample in the given data. A correlation plot can be
used to quickly visualise the strength of the correlation between each variable before looking further into the

data.

Create data frame of technological traits
milk_tech <- milkdatal[,12:18]

Create correlation plot for all protein tratits
milk_tech_cor <- cor(na.omit(milk_tech))

corrplot.mixed(milk_tech_cor, tl.cex=0.4, tl.col="black",
main = " Correlation Plot of Technological Traits", mar = ¢(0,0,2,0))

Correlation Plot of Technological Traits

Casein_micelle_size

0.8
0.6

Heat_stability

0.4

: O
0.2
—0.2

0.4
-0.56 | -0.67 | -0.57 | = ‘ 06
-0.8

049 |
-1

Like what we saw for the protein traits, there are several cases where values have not been recorded for some
technological traits various observations. I have decided to remove all observations containing NA values for
the technological traits using the na.omit function before proceeding with the analysis of the technological
traits.

Due to the relatively large number of technological traits to analyse, I will first look at the first 3 traits, and
will later look at the remaining 4 traits traits separately.

19

As stated earlier, I have chosen to look at data points that are greater than 3 times the interquartile range
above the third quartile, and 3 times the interquartile range below the first quartile, when considering values
that may be genuine outliers in the data that should be considered for removal. In the boxplots below, I
have defined the whiskers to extend this length, so that any data points that could be considered as extreme
outliers can easily be identified on the plots.

The first boxplot below shows the distribution of the first 3 technological traits in their original scale.
Drop rows that include NAs

milk_tech <- na.omit(milk_tech)
rownames (milk_tech) <- 1:nrow(milk_tech)

boxzplot of first 3 tech traits
boxplot(milk_tech[,1:3], 3, 2, 0.5, heat.colors(3), "Boxplots of Technologi

Boxplots of Technological Traits
(Whiskers extend 3 x IQR)

4000 —f

3000 — O

2000 —

O 00O

Measured Value

1000 —

|

|

Heat_stability —
pH

Casein_micelle_size —

20

To determine exactly which observations these outliers are from, a different boxplot function from the car
library can be used to identify the index of these observations.

Due to the large difference in the magnitude of the ranges in each of these distributions, it is difficult to
visualise each distribution on the same boxplot in their original scale. Therefore, I have also decided to show
the standardised data distributions on the boxplot.

Bozplot of first 3 tech traits

bp3 <- Boxplot(scale(milk_tech[,1:3]), e 3,
list(0.5, "avoid", "red"),
2, 0.5, heat.colors(3),

"Boxplots of Standardised Technological Traits\n(Whiskers extend 3 x IQR)",

Boxplots of Standardised Technological Traits
(Whiskers extend 3 x IQR)

57,
1,
8 —
(o) 5%
= 6
G 2
> 8
21
*
8 4 — 27%25 153
;) *26 158% 9
2 -
= ' '
© ! '
° 2 = : !
c | .
8 . .
m 0 — o
—_—
[1
T T
—_— 1
1
-2 — 1
—_—
2 3
wl o
o 8
8 7
E g
T
@
(6]

21

"Standard

From the boxplot above, several observations were identified as potential outliers considering the values
recorded for some of the technological traits, in particular for Casein_micelle__size.

To further visualise these outliers, we can look at pairs plots of the first 3 technological traits, plotting
the relationship between each pair of traits. In the pairs plots below, the outliers identified on the boxplot
are highlighted in red. Again, the majority of these observations appear to be legitimate outliers, clearly
deviating significantly from the bulk of the data in most of the plots below.

get indices of outliers
inds3 <- unique(as.numeric(bp3))

create vector of 1s and 2s corresponding to outliers
colvec <- rep(1, nrow(milk_tech))

colvec[inds3] <- 2

Pairs plot of the first 4 protein tratits
pairs(milk_tech[,1:3], c(m.", "x")[colvec], c("lightblue", "red") [colvec], "Pairs Plot of

Pairs Plot of Technological Traits

0 5 10 15 20 25 30

]]]]]]] 8
* * — o
* * <
. . . o
Casein_micelle_size . . 1** . ks
N
. * i 5 L o
o _[=x * K
™ * *
8 : * * * *
. Heat_stability
8 . *** . t** .
o -
L <
* * N~
* * | w
* * . * ; pH — ©
LA * * * * | ©
©
<
I I I I I I I I I I I ©
0 1000 2000 3000 4000 6.4 6.6 6.8 7.0

Several of the outliers relating to the Casein_micelle size trait appear to be an order of magnitude away
from the bulk of the data. It is possible that these values may have been entered correctly (i.e. decimal point
omitted), but without being able to confirm this, I have decided that these observations should be omitted.

Without any further knowledge available regarding why these observations have such extreme values for some
of the recorded protein traits, I have decided to omit them from the data when calculating the summary
statistics for these traits.

Updated Pairs plot of the first 4 protein traits
pairs(milk_tech[-inds3, 1:3], LR "lightblue", "Pairs Plot of Technological Traits")

22

Pairs Plot of Technological Traits

0
|

5 10 15 20
]]]]

25

Casein_micelle_size

25

15

Heat_stability

pH

! ! ! !
100 150 200 250

get summary stats of reduced dataset
sumtab3 <- as.data.frame(apply(milk_tech[-inds3, 1:3], 2, summary))

get stand.dev. wvalues for reduced dataset
sds3 <- apply(milk_tech[-inds3, 1:3], 2, sd)

6.4

6.6

6.8

7.0

200

100

6.4 6.6 68 7.0

get shapiro wilkes test statistic values for reduced dataset (normality test)

sw3 <- NULL

loop through indices of relevant columns

for(i in 1:3) {

calculate W value for the current column
sw3 <- c(shapiro.test(milk_tech[-inds3, i])$statistic, sw3)

}

bind stand. deviations and shapiro wilk W values to summary data frame

sumtab3 <- rbind(sumtab3, sds3, sw3)
rownames (sumtab3) [7:8] <- c("St.Dev", "W")

print table of summary statistics

kable (sumtab3, 'c")
Casein_micelle_size Heat_ stability pH
Min. 63.1200000 0.5800000 6.4200000
1st Qu. 151.9500000 3.8150000 6.6170000
Median 166.8000000 6.1700000 6.6900000
Mean 170.4692698 7.5917778 6.6985714
3rd Qu. 183.1000000 9.3100000 6.7800000
Max. 269.9000000 27.0200000 7.0600000

23

Casein_ micelle_size Heat_ stability pH

St.Dev 26.5900643 5.2281226 0.1114271
W 0.9876646 0.8437934 0.9481062

24

We can also visualise the distributions of each of the traits using histograms as shown below. The outliers
identified above have been omitted when creating these plots.

set plot window to 2 rows = 2 columns
par(c(2,2))

loop through each trait

for(i in 1:3){
Plot probability density histogram of selected tratt

hist(milk_tech[-inds3,i], FALSE, 20,
pasteO("Histogram and Density Plot of\n", names(milk_tech) [i]),
names (milk_tech) [i], heat.colors(3) [i])

plot density plot of selected trait
lines(density(milk_tech[-inds3,i]))

}
Histogram and Density Plot of Histogram and Density Plot of
Casein_micelle_size Heat_stability
Lo
> 2 > 9
7 S 2 o
8 o a
8 8
2 | | |] = | | | | |
100 150 200 250 0O 5 10 15 20 25
Casein_micelle_size Heat_stability
Histogram and Density Plot of
pH
= Smn
2« 7 S~
)
: a s
o

il | | | | | | |
6.4 6.6 6.8 7.0

pH

25

RCT / k20 / a30 / a60

The boxplot below shows the distribution of the final 4 technological traits in their original scale. Only
one data point is considered an outlier on the boxplot below (for the k20 trait) based on my earlier defined

criteria.

boxzplot of last 4 technological tratits

boxplot(milk_tech[,4:7],

Measured Value

=

60

40

20

Boxplots of Technological Traits
(Whiskers extend 3 x IQR)

3, 28

0.5, heat.colors(4),

"Boxplots of Technologi

O

k20 —f

26

a30

a60

Again, we can plot the observation index of the identified outlier on the boxplot, and we can also standardise
each of the traits to make the distributions of each trait easier to visualise when shown side by side on the
same plot.

Boxzplot of last 4 tech traits
bp4 <- Boxplot(scale(milk_tech[,4:7]), pch="*", range=3,
id=list(cex=0.5, location="avoid", col="red"),
las=2, cex.axis=0.5, col=heat.colors(4),
main="Boxplots of Standardised Technological Traits\n(Whiskers extend 3 x IQR)", ylab="Standard

Boxplots of Standardised Technological Traits
(Whiskers extend 3 x IQR)

*130
4 — S E—
1
1
] - r
3 — 1 1
()] | _— |
E : ' :
] 1 ! 1
> 2 — 1 : 1
S 1) 1
D I ! I
0 1 — ! : !
S 1 1
a 1
ie] 0o —
[
©
ey 1
wn i — ! T !
1
—_— _—l !
1
1
P — |
1
_—
. < o o
g § g g

27

To further visualise the data and the outlier identified above, we can look at pairs plots of the final 4
technological traits, plotting the relationship between each pair of traits. In the pairs plots below, the outlier
identified on the boxplot is highlighted in red. Again, it appears to be a legitimate outlier, clearly deviating
significantly from the bulk of the data in some of the plots below.

It is also apparent from looking at the pairs plots that a number of observations have zero values recorded
for some of the technological traits, most noticeably in the k20 (curd firming time) and 30 (curd firmness
after 30 minutes) traits. While a30 values of zero appear to be legitimate recordings and follow the trend
of the data (e.g. a30 values appear to decrease linearly with increase in RCT until a certain thresholdRCT*
value is reached, at which point only values of zero are measured for a30), it doesn’t appear that the k20
values recorded as zero follow the trend of the remaining data. I have plotted observations with zero values
for k20 in green on the pairs plots below for clarity.

get indices of outliers
inds4 <- unique(as.numeric(bp4))

create vector of 1s and 2s corresponding to outliers
colvec <- rep(l, nrow(milk_tech))

colvec[inds4] <- 2

colvec[which(milk_tech[,5]==0)] <- 3

Pairs plot of the last 4 tech traits
pairs(milk_tech[,4:7], c(m.m, "x" """y[colvec], c("lightblue", "red", "darkgreen") [colvec],

Pairs Plot of Technological Traits

0 5 10 20 0 20 40 60
,I‘ | | | | | x | I/(\I N I I |
ﬁ ﬁ AR I~ g
RCT J] o
A N A | N
A A A — O
o]
N
o k20
—
o —a N MAN N A N A oo
. O
a30 <
A A N -
A * L0 NN A * & — O
o]
(D —
g 7 a60
: n % /)\MM k * R * A
o —1a N A
I I I I I I I I I I
0 10 20 30 40 50 0 20 40 60

Without any further knowledge available on the identified outliers or the zero values recorded for k20 for
some observations for these technological traits, I have decided to omit them from the data when calculating
the summary statistics for these traits.

28

Updated Pairs plot of the last 4 protein traits
pairs(milk_tech[-c(inds4, which(milk_tech[,5]==0)), 4:7], oy "lightblue", "Pairs Plot of

Pairs Plot of Technological Traits

5 10 15 20 25 10 30 50 70
I N A YT
- 8
RCT -
-2
o _
(V]
=] k20
Lo p—
a30 -9
- o
o
S 1 a60
o]
— T T T T T T T T
10 20 30 40 0 20 40 60

get summary stats of reduced dataset
sumtab4 <- as.data.frame(apply(milk_tech[-c(inds4, which(milk_tech[,5]==0)), 4:7], 2, summary))

get stand.dev. values for reduced dataset
sds4 <- apply(milk_tech[-c(inds4, which(milk_tech[,5]==0)), 4:7], 2, sd)

get shapiro wilkes test statistic values for reduced dataset (normality test)
sw4 <- NULL
loop through indices of relevant columns
for(i in 4:7) {
calculate W value for the current column
sw4 <- c(shapiro.test(milk_tech[-c(inds4, which(milk_tech[,5]==0)), il)$statistic, swd)
3

bind stand. deviations and shapiro wilk W wvalues to summary data frame
sumtab4 <- rbind(sumtab4, sds4, swéd)
rownames (sumtab4) [7:8] <- c("St.Dev", "W")

print table of summary statistics
kable (sumtab4, 'c")

RCT k20 a30 a60

Min. 1.7500000 1.2500000 0.0000000 9.6000000
1st Qu. 14.5000000 3.7500000 10.3250000 23.3000000

29

RCT k20 a30 a60
Median 19.7500000 5.5000000 25.5500000 28.8000000
Mean 20.5678105 6.8733660 25.0330719 30.7601961
3rd Qu. 26.6875000 9.2500000 36.7200000 35.4100000
Max. 42.0000000 25.7500000 74.1200000 69.7600000
St.Dev 8.5342186 4.4034843 17.4659741 10.7989965
W 0.9152271 0.9572039 0.8875998 0.9898723

30

We can also visualise the distributions of each of the traits using histograms as shown below. The outliers

identified above have been omitted when creating these plots.

set plot window to 2 rows = 2 columns
par(c(2,2))

loop through each trait

for(i in 4:7){
Plot probability density histogram of selected tratt

hist(milk_tech[-c(which(milk_tech[,5]==0), inds4), il, FALSE, 20,
pasteO("Histogram and Density Plot of\n", names(milk_tech) [i]),
names (milk_tech) [i], heat.colors(4) [i-3])
plot density plot of selected trait
lines(density(milk_tech[-c(which(milk_tech[,5]==0), inds4), i]))
}
Histogram and Density Plot of Histogram and Density Plot of
RCT k20
2 9 2 3
2 3 2 5
o o
0 o 0 o
S S
o o | I I I I |
0 5 10 15 20 25
RCT k20
Histogram and Density Plot of Histogram and Density Plot of
a30 a60
> 8 > @ /TR
G o - G C)]
c - g c o _]
© O
2 8 2‘1"4 M—:g_\ e S | JJZ Mﬂ\
S S
o [I I | o [I I I I I |
0 20 40 60 10 20 30 40 50 60 70
a30 a60

31

2. Clusters

We will now look at the MIR spectra data in the given data set, and we will look for clusters of similar
spectra. Firstly, we can create a new data frame with all columns removed except for the spectra data.

Three separate ranges of wavenumbers are provided in the data set: 941cm™ - 1601ecm™, 1736cm™ - 3005¢m™!
and 3714cm™ - 3815cm™. For the purposes of clear and accurate plotting of the spectra data, I will create
vector of the given wavenumbers (by dropping the “X” from the column names) and I will create 3 separate
vectors of column index values corresponding to each of the ranges defined above.

Create data frame with wavelength data only
milk_waves <- na.omit(milkdatal, -c(1:18)])

create vector of wavenumbers (drop "X" from columm names)
wavenums <- as.numeric(substring(names(milk_waves), 2))

create vectors of spectral ranges (column indices)
rangel <- 1:172; range2 <- 173:502; range3 <- 503:529;

Before looking at clustering, we can visualise the spectra data using matplot. From the first plot below there
is significant differences visible in the variation of the data across the spectrum (e.g. far more variation in
absorbance values in 3714cm™ - 3815cm™ range than in the range of 2000cm™ - 2500cm™).

As such, it can be useful to standardise the data so that each feature (i.e. wavenumber) has an equal variance
(equal to 1). We can do this by getting the standard deviation of each wavenumber column, and dividing
the values in each column by the corresponding standard deviation. This can be helpful both in terms of
visualisation and also when fitting the data to a model, as it gives equal weighting to each feature rather.
The second plot below shows the MIR spectra data after it has been standardised.

While the mean values of the data at each wavenumber are preserved in the standardised data, it can be
very helpful for visualisation purposes to also center the data so that the data at each wavenumber has a
mean value of 0. The third plot below shows the MIR spectra data after it has been both standardised and
centered. As all the data are on the same scale and are centered on the same mean value, it is easier to
visualise the spread of the data across the full spectrum of wavenumbers.

plot wave data

matplot(wavenums, t(milk_waves), "wavenumber (cm™-1)", "Absorbance [Log(1/T)]",
matlines(wavenums [rangel], t(milk_waves[,rangel]), 1, LR 1)
matlines(wavenums [range2], t(milk_waves[,range2]), 1, R 1)
matlines(wavenums [range3], t(milk_waves[,range3]), 1, ", 1)

32

|lnll

)

=
|_
~
2 3
(@] o
(@)
=,
8 A~
AN
o - — A
~
8 ° ~
p —
@]
[%2]
Q0
< o _|
o

I I I I I I
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

Get standard deviation for each column

stDevWaves <- apply(milk_waves, 2, sd)

divide each column of data frame by its standard deviation
stdwaves <- sweep(milk_waves, 2, stDevWaves, "/")

plot standardised waves data

matplot(wavenums, t(stdwaves), xlab = "wavenumber (cm”-1)", ylab = "Standardised Absorbance", type="n")
matlines(wavenums [rangel], t(stdwaves[,rangel]), lwd = 1, type="1", 1ty = 1)

matlines(wavenums [range2], t(stdwaves[,range2]), lwd = 1, type="1", 1ty = 1)

matlines(wavenums [range3], t(stdwaves[,range3]), lwd = 1, type="1", 1ty = 1)
g =]
C
3
5 w Iz
g z
<
©
§ o -
€§
©
2 v |
Eg |
(9p]
o
H —
! | | | | | |
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

33

plot standardised & centered waves data

matplot(wavenums, t(scale(stdwaves)), xlab = "wavenumber (cm”-1)", ylab = "Standardised & Centered Abso:
matlines(wavenums [rangel], t(scale(stdwaves[,rangel])), lwd = 1, type="1", 1ty = 1)

matlines(wavenums [range2], t(scale(stdwaves[,range2])), lwd = 1, type="1", 1ty = 1)

matlines(wavenums [range3], t(scale(stdwaves[,range3])), lwd = 1, type="1", 1ty = 1)
(O]

(&S]

% P
o o — _—
S

o =
(2]

O

<

©

Q

S

(O] o —

+—

c

(]

@]

%]

D

R U

©

S

©

e}

C

©

—

n I I I I I I

1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

34

K-means clustering is a partitioning clustering method that aims to separate data in to a specified number of
clusters of similar observations. We need to define a suitable number of clusters for the K-means algorithm
without assuming any knowledge of a suitable number of groups or clusters. One way to determine a suitable
value is to calculate the within group sum of squares, which measures how tightly packed each of the clusters
are.

We can repeat the K-means algorithm for a range of k values (number of clusters) and calculate the within
group sum of squares value in each case. The plot below shows the within group sum of squares values for
a range of k values of 1 to 10. We want to find the ‘elbow’ point in the plot, the k value where the rate of
decrease of the within group sum of squares starts to reduce significantly. This appears to be at a value of
k=3 below, or possibly k=4.

create empty vector to store within group sum of squares values
WGSS <- rep(0,10)

calculate WGSS for solution with 1 cluster
n <- nrow(stdwaves)
WGSS[1] <- (n-1) * sum(apply(stdwaves, 2, var))

calculate WGSS wvalues for 2 to 10 clusters
for(k in 2:10) {

WGSS[k] <- sum(kmeans(stdwaves, k, 50) $withinss)
}
Plot WGSS wvws K
plot(1:10, WGSS, "b", "K", "Within group sum of squares",
"WGSS Values for K-means Clustering (K=1:10)", "blue")

WGSS Values for K-means Clustering (K=1:10)

0
o
(7]
o 3 |
o
S 5
o N
wn
[T
o (0]
E p—
>
wn
o
3 8
o
> 8 \
c o
= o o)
g \o
o —
= oO—__
S 4 O— o
o O——o
L0 I I I I I
2 4 6 8 10

K

Another method that can be used to determine a suitable number of clusters is to look at the Calinski-
Harabasz index. This is the ratio between the within group sum of squares and between sum of squares after
they have each been scaled by their degrees of freedom.

35

A larger Calinski-Harabasz index value typically corresponds to a greater choice of number of clusters. The
plot below shows the Calinski-Harabasz index value obtained for a range of k values of 1 to 10. Again, a
value of k=3 or k=4 appear to be a reasonable number of clusters for this data set.

K <- 10
create empty vectors to store within group sum of squares/between sum of squares
WSS <- BSS <- rep(NA, K)
for(k in 1:K) {
run kmeans for each wvalue of k
fit <- kmeans(stdwaves, k, 50)
WSS[k] <- fit$tot.withinss # store total within sum of squares
BSS[k] <- fit$betweenss # store between sum of squares

}

compute Calinski-Harabasz index for each wvalue of K
N <- nrow(stdwaves)

ch <- (BSS / (1:K-1)) / (WSS / (N-1:K))

the value of CH index for K = 1 is set to zero

ch[1] <- 0

par(c(1,1))

plot Calinski-Harabasz index for each walue of K

plot(1:K, ch, "b", "Calinski-Harabasz index", "K", "blue",

"Calinski-Harabasz Index Values for K-means Clustering (K=1:10)")

Calinski-Harabasz Index Values for K-means Clustering (K=1:10)

o

m_

T—o0 —
O\

5 8 / °—o
S o o0
c
N
n o

m_
S 3
©
I

o
T g
L —
=
(%3]
£ o
© ol
@)

o - o

[[[[[
2 4 6 8 10

K

To determine whether the obtained clusters relate to any of the categorical covariates in the data set (Breed,
Date_of sampling, Parity, Milking_Time), we can compare clusters obtained using the K-means algorithm
for k=3 and k=4 as suggested from the plots above, with each of the categorical covariates.

To measure the similarity between the clusters and the categories, the adjusted Rand index can be calculated.

36

The Rand index is a measure of the agreement between 2 data groupings, while the adjusted Rand index is
a measure of this agreement after correcting for agreement by chance.

From the table below, the strongest agreement was identified between the clustering of k=3 and the Mzilk-
ing_Time categorical covariate, with an adjusted Rand index value of 0.25. The remaining categorical
covariates returned adjusted Rand index values close to 0, indicating that they were not similar to the
clustering structures obtained using K-means.

try kmeans clustering with k=3:4
fit3 <- kmeans(stdwaves, 3, 50)
fit4 <- kmeans(stdwaves, 4, 50)

create empty data frame and vector for storing adjusted rand values
randTable <- data.frame()
new_row <- NULL

loop through the 4 categorical traits in the data set
for(i in 1:4){
get adjusted rand index values for K=3:4 for current wvariable
new_row <- c(
classAgreement (table(fit3$cluster, milkdatal[,i]))$crand,
classAgreement (table(fit4$cluster, milkdatal,i]))$crand)

get adjusted rand index values for K=3:4 for current wvariable
randTable <- rbind(randTable, new_row)

}

round wvalues in table to 2 decimal places
randTable <- round(randTable, 2)

set row and column names

rownames (randTable) <- names(milkdatal,1:4])
names (randTable) <- c("K = 3", "K = 4")

print table of adjusted rand index values

kable(randTable, 'c')
K=3 K=4
Breed 0.06 0.04
Date_of sampling 0.03 0.05
Parity 0.02 0.03
Milking Time 0.25 0.20

We can use matplot to visualise the spectral data again, but this time we will colour each observation’s curve
based on its associated cluster, as shown in the forst plot below. The grouping appears to separate the
spectra relatively well.

Repeating this but colouring each curve based on Milking Time and comparing to the first plot, it appears
that the “Evening” values typically correspond to one of the clustered, and “Morning” values typically
correspond to another cluster.

We can view what frequency each of the Evening and Morning observations overlap with each of the clusters
using the table function, as shown below. While the clusters don’t separate the morning and evening
samples perfectly, one of the clusters does capture the majority of the Evening observations and another
cluster captures the majority of the Morning values.

37

check <f any NA values are in milking time column, save index values
MT_NA <- which(is.na(milkdata$Milking_Time))

symbols and colours wvector
symb <-c(15, 16, 17, 18)
col <-c("darkorange2","deepskyblue3","magenta3", "darkgreen")

create factor of fit3 cluster data
fit3clust <- as.factor((fit3$cluster) [-MT_NA])
levels(fit3clust) <- c("Cluster 1", "Cluster 2", "Cluster 3")

plot standardised spectra with colours corresponding to clusters (K = 3)

matplot(wavenums, t(scale(stdwaves[-MT_NA,])), type="n", xlab = "wavenumber (cm™-1)", ylab = "Standardi
legend("topleft", legend = c("Cluster 1", "Cluster 2", "Cluster 3"), col = col[1:3], 1ty = 1, bty = "n"
matlines(wavenums [rangel], t(scale(stdwaves[-MT_NA,rangel])), col = adjustcolor(col[fit3clust], 0.2), 1
matlines(wavenums [range2], t(scale(stdwaves[-MT_NA,range2])), col = adjustcolor(col[fit3clust], 0.2), 1
matlines(wavenums [range3], t(scale(stdwaves[-MT_NA,range3])), col = adjustcolor(col[fit3clust], 0.2), 1

—— Cluster 1
O — —— Cluster 2
—— Cluster 3

m

Standardised & Centered Absorbance

I I I I I I
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

plot standardised spectra with colours corresponding to Milking_ Time group

matplot(wavenums, t(scale(stdwaves)), type = "n", xlab = "wavenumber (cm”-1)", ylab = "Standardised & C
legend("topleft", legend = c("Evening", "Morning"), col = col[1:2], 1ty = 1, bty = "n", cex = 0.8)
matlines(wavenums [rangel], t(scale(stdwaves[-MT_NA,rangel])), col = adjustcolor(col[(milkdata$Milking T
matlines(wavenums [range2], t(scale(stdwaves[-MT_NA,range2])), col = adjustcolor(col[(milkdata$Milking T
matlines(wavenums[range3], t(scale(stdwaves[-MT_NA,range3])), col = adjustcolor(col[(milkdata$Milking T

38

—— Evening
O — —— Morning

Standardised & Centered Absorbance

I I I I I
1000 1500 2000 2500 3000

wavenumber (cm”-1)

compare kmeans clustering (k=3) with Milking_Time
tab <- table(fit3clust, (milkdata$Milking Time) [-MT_NA])

print table
kable(tab, align = 'c')

Evening Morning

Cluster 1 35 222
Cluster 2 4 4
Cluster 3 97 67

print rand index and adjusted rand index wvalues
cat("Rand index:", classAgreement(tab)$rand)

Rand index: 0.6270614

cat("Adjusted Rand Index", classAgreement (tab)$crand)

Adjusted Rand Index 0.2532924

39

3500

3. Classification

Next we will try to classify milk samples as having a heat stability of less than 10 minutes. As the data set
gives a heat stability time for each observation (in minutes), we need to create a vector of values corresponding
to whether an observation’s heat stability is less than or greater than 10 minutes, assigning a value of 1 for
samples with heat stability less than 10 minutes, and 2 otherwise.

Create wvector of ones

HeatStabilityl0 <- rep(l, nrow(stdwaves))

set wvalue to 2 t1f corresponding row has Heat Stability > 10
value s 1 1f <=10, wvalue s 2 1f >10
HeatStability10[milkdata$Heat_stability > 10] <- 2

create new data frame which ts a copy of stdwaves
stdwavesl <- stdwaves

add HeatStabilitylO column to the data frame
stdwaves1$HS10 <- HeatStabilityl0

As the data is highly collinear, I will first attempt to use K nearest neighbours classification on the spectral
data. We need to specify the number of neighbours, k, to be considered for the algorithm, but this is not
always easy to choose.

Before fitting any models, I will first split the data into a test and a training data set. The training data
will be used for training and validating the model. After the best model has been fitted, a final test of the
model will be performed using the test data.

proportion of rows to be reserved for test data
test_split <- 0.25

number of rows to be reserved for test data
num_test_inds <- floor(test_split * nrow(stdwavesl))

generate indices for training and test data
test_ind <- sample(l:nrow(stdwavesl), num_test_inds)

train_ind <- setdiff(1:nrow(stdwavesl), test_ind)

plot standardised spectra with colours corresponding to Heat Stability less than / greater than 10 m%

matplot(wavenums, t(scale(stdwaves[test_ind,])), Mg "wavenumber (cm™-1)", "Standar
legend("topleft", c("<10 (Actual)", ">10 (Actual)"), coll[1:2], 1, "n",

matlines(wavenums [rangel], t(scale(stdwaves[train_ind, rangel])), adjustcolor(col[HeatStability10
matlines(wavenums [range2], t(scale(stdwaves[train_ind, range2])), adjustcolor(col[HeatStability10
matlines(wavenums [range3], t(scale(stdwaves[train_ind, range3])), adjustcolor(col[HeatStability10

40

()
)

S —— <10 (Actual)

o < —| —— >10(Actual)

o

%)

o'

< N — =
ke =
5 =
g o -

c

() -
@) N

o3 I

g

[< _|

2 I

=

©

s 9P 4

c

8

7p]

I I I I I I
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

To determine a suitable k value, we can test a range of different k-values with the k nearest neighbours
algorithm and calculate the misclassification rate in each case. The knn.cv function can be used to perform
leave-one-out cross-validatory classification on the training data for each value.

As results can vary with every iteration, I will perform the algorithm 10 times on each k-value and take the
mean misclassification value.

empty vector to hold misclasstfication values for each k
vec <- NULL

test values of neighbours considered for knn from 1 to 30
for(kk in 1:30) {

empty vector to hold misclassification values
vec2 <- NULL

run knn algorithm 10 times for each k, take average misclassification
for(i in 1:10){
Perform k nearest nmeighbours cross validation (leave one out)
knn.res <- knn.cv(stdwaves[train_ind,], cl=HeatStabilitylO[train_ind], k=kk)
create table comparing knn result to actual heat stability classification vector
tab <- table(knn.res, HeatStability1O[train_ind])
add misclassification rate of current knn classification
vec2 <- c(vec2, 1 - sum(diag(tab)) / sum(tab))

}
add average misclassification rate of current k to wec
vec <- c(vec, mean(vec2))

3

plot misclassification rate versus K
plot(1:30, vec, main = "Misclassification Rate vs K Value", xlab = "Number of Neighbours", ylab = "Misc.
plot red point at min. value

41

points(which(vec == min(vec))[1], min(vec), "red")

Misclassification Rate vs K Value

<
(Y)__
o o
9
©]
o4
[
S &
— .
(1] o
O
=
= _
@
5 o
2 27
=
[e0]
N
S | | | | | |

0 5 10 15 20 25 30

Number of Neighbours

The plot shows minimum misclassification rate at K=27. We can test this again on the training data, and
create a confusion matrix comparing knn classified results to the actual heat stability classes.

perform knn cross wvalidation again with optimum k (=27)
knn.res <- knn.cv(stdwaves[train_ind,], HeatStabilityl10[train_ind], 27)

create table of confusion matriz
tab <- table(knn.res, HeatStability1O[train_ind])

rename table rows and columns
rownames (tab) <- c("LT10 (KNN)", "GT10 (KNN)")
colnames(tab) <- c("LT10 (Actual)", "GT10 (Actual)")

print table

kable(tab, dcD)
LT10 (Actual) GT10 (Actual)
LT10 (KNN) 214 87
GT10 (KNN) 6 16
cat("Misclassification Rate (KNN): ", 1 - sum(diag(tab)) / sum(tab))

Misclassification Rate (KNN): 0.2879257

42

We can also test knn on our test data, using K=27 as above.

use knn to predict test data classes from training data, K=27
knn.res <- knn(stdwaves[train_ind,], stdwaves[test_ind,], HeatStability1O[train_ind],

create confusion matriz table
tab <- table(knn.res, HeatStability1O[test_ind])

rename table rows and columns
rownames (tab) <- c("LT10 (KNN)", "GT10 (KNN)")
colnames(tab) <- c("LT10 (Actual)", "GT10 (Actual)")

print table
kable(tab, 'c')

LT10 (Actual) GT10 (Actual)

LT10 (KNN) 62 34
GT10 (KNN) 4 7

cat("Test Misclassification Rate (KNN): ", 1 - sum(diag(tab)) / sum(tab))

Test Misclassification Rate (KNN): 0.3551402

The misclassification rate of the heat stability data using knn is still relatively high.

We can try other approaches such as Linear Discriminant Analysis (LDA) and Quadratic Discriminant
Analysis (QDA), however one issue with using those methods on the current data is that the spectral data
is highly collinear, and there are a large number of columns.

To deal with this, we can first use Principal Component Analysis (PCA) to represent the data in the
spectral columns with a smaller number of independent columns of data. The pairs plots below show the
first 4 columns of the spectral data, and the first 4 principal components.

perform PCA on training data
fit <- prcomp(stdwavesl[train_ind,])

get principal components for training data
newspectra = predict(fit)

pairs plot of first 4 columns of spectral data
pairs(stdwaves[train_ind,1:3], c(1,4) [HeatStability10[train_ind]],
adjustcolor(c("red", "blue"), 0.5)[HeatStability1O[train_ind]l], 0.8,
"Pairs Plot of First 3 Wavenumbers")

43

27)

Pairs Plot of First 3 Wavenumbers

-7 6 -5 -4 -3 -2
]]]]]]
[
-X°" .)9"
X941
il ¢
X
o0° 5°
X945
el s*
K [
50° »0°
X949
&ax ¢¢K
! ! ! ! ! ! ! ! ! ! ! !
-7 -6 -5 -4 -3 -2 -7 -6 -5 -4 -3 -2

pairs plot of first 4 Principal Components
pairs(newspectral,1:3],

40

0

-80 -40

c(1,3) [HeatStability10[train_ind]],
adjustcolor(c("red", "blue"), 0.5)[HeatStability1O[train_ind]],

"Pairs Plot of First 4 Principal Components")

Pairs Plot of First 4 Principal Components

44

-80 -40 0 20 40
| | | | | | |
PC1 K
+
+ +
+ S
. +
PC2 SeRbor
+ + + *
+ +
+ + . #
+ Ny pw PC3
B,
| | | | | | | | | | | | |
-60 -20 0 20 40 -20 0 10 20 30 40

-60 -20 20

20 40

-20 O

0.8,

calculate proportion of variation explained by first 10 PCs
propvar <- rep(0,10)
for(i in 1:10) propvar[i] <- (((fit$sdev) [i])"2)/(sum(fit$sdev”2))

Plot the proportion of variance explained by first 10 PCs

plot(1:10, propvar, type = "h", main = "Scree Plot of First 10 Principal Components",
xlab = "Principal Component", ylab = "Proportion of Explained Variance")

points(1:10, propvar, col = "blue", pch = 16)

Scree Plot of First 10 Principal Components

0 ®

o) _|

O o

[

.©

=1 <t

£ o 7

©

e w

— - ®

T o

o

>

e

5 o

[

o

=

S . —

o o

o

£ o ?

] (] o [)

S [] [] []

I I I I I
2 4 6 8 10

Principal Component

We can use linear discriminant analysis on a subset of the principal components, but to determine a suitable
number of components to use we can fit multiple models and calculate and plot the misclassification rate
in each case. Performing LDA using leave-one-out cross validation on the training data, a misclassification
rate value of 0 was achieved after 13 principal components were used when training the model.

#LDA PCA
vec <- NULL
Loop through 1:15 (number of PCs to be included in model)
for(i in 1:15) {
linear discriminant analysis with leave one out cross wvalidation
lda.res.cv <- lda((stdwaves1$HS10) [train_ind] ~ newspectral,1:i], CV = TRUE)
cross tabulation between lda classification and actual heat stability classes
tab <- table(lda.res.cv$class, HeatStabilitylO[train_ind])
add misclassification to vector
vec <- c(vec, 1 - sum(diag(tab)) / sum(tab))

3

plot misclassification rate vs number of

plot(1:15, vec, type = "b", main = "LDA Misclassification Rate vs\nNumber of Principal Components",
xlab = "Number of Pricncipal Components Included in Model", ylab = "Misclassification Rate", pch =

45

LDA Misclassification Rate vs
Number of Principal Components

0.30
l
/

0.20
|
)

0.10
|
/

Misclassification Rate

*—eo—_g,

2 4 6 8 10 12 14

0.00
I

Number of Pricncipal Components Included in Model

We can now test our model obtained from cross-validation on the training data. First, we must transform
the test data based on the principal component analysis carried out on the training data.

Then we can fit the model to the training data, using a subset of the principal components. Below I have
chosen to use the first 10. After fitting the model, we can obtain predictions for the test data, and compare
the results to the actual heat stability classes of the test data. A confusion matrix of the results is shown
below, along with the calculated misclassification rate.

get principal components for test data
testspectra = predict(fit, stdwavesl[test_ind,])

Use optimum number of PCs in LDA
lda.fit <- lda(newspectral,1:10], (stdwaves1$HS10) [train_ind])

predict classes for test data
preds <- predict(lda.fit, testspectral[,1:10])$class

cross tabulation between lda classification and actual heat stability classes
tab <- table(preds, HeatStabilitylO[test_ind])

rename table rows and columns

rownames (tab) <- c("LT10 (LDA)", "GT10 (LDA)")

colnames(tab) <- c("LT10 (Actual)", "GT10 (Actual)")

plot confusion matriz
kable(tab, 0gt)

46

LT10 (Actual) GT10 (Actual)

LT10 (LDA) 59 16
GT10 (LDA) 7 25

print misclassification rate for test data
cat ("LDA PDA Test", 1 - sum(diag(tab)) / sum(tab))

LDA PDA Test 0.2149533

We can improve the LDA classification by using more principal components when fitting the model. Firstly,
I have plotted the MIR spectra of the samples below, first with the colour for each observation based on the
predicted heat stability class, and then for the actual heat stability class, when using 10 principal components
during the fitting of the LDA classification model. Then I plotted the spectra again, but with colour based
on whether the observation was correctly identified or not.

I then refitted the model twice, first using 11 principal components from the training data and then using
12. In both cases, I used the models to predict the heat stability class of each of the observations in the test
data set, and I again produced spectral plots with observations colours based on whether they were classified
correctly or incorrectly.

plot standardised spectra with colours corresponding to predicted heat stability classes

matplot (wavenums, t(scale(stdwaves[test_ind,])), type="n", xlab = "wavenumber (cm”-1)", ylab = "Standar
legend("topleft", legend = c("<10 (predicted)", ">10 (predicted)"), col = col[1:2], 1ty = 1, bty = "n",
matlines(wavenums [rangel], t(scale(stdwaves[test_ind, rangell])), col = adjustcolor(col[preds], 0.3), lw
matlines(wavenums [range2], t(scale(stdwaves[test_ind, range2])), col = adjustcolor(col[preds], 0.3), lw

matlines(wavenums [range3], t(scale(stdwaves[test_ind, range3])), col = adjustcolor(col[preds], 0.3), lw

PCs: 10

()
(&)

% —— <10 (predicted)

Qo < - — >10 (predicted)

o)

)

O

< N —

§e

Q =
) o =
= =
()

O N

o3 I

§e

] <t _|

L I

=

(]

s © 4

c

o

09}

I I I I I I
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

47

plot standardised spectra with colours corresponding to actual heat stability classes

matplot(wavenums, t(scale(stdwaves[test_ind,])), type="n", xlab = "wavenumber (cm”-1)", ylab = "Standar
legend("topleft", legend = c("<10 (Actual)", ">10 (Actual)"), col = col[1:2], 1ty = 1, bty = "n", cex =
matlines(wavenums [rangel], t(scale(stdwaves[test_ind, rangel])), col = adjustcolor(col[HeatStabilityl1O0[
matlines(wavenums [range2], t(scale(stdwaves[test_ind, range2])), col = adjustcolor(col[HeatStability1O0[
matlines(wavenums [range3], t(scale(stdwaves[test_ind, range3])), col = adjustcolor(col[HeatStabilitylO[

PCs: 10

()

&)

% —— <10 (Actual)

o < - —— >10(Actual)

@)

)

o

< N —

g,

4] =
a o - =
g =
)

) N

o3 I

S

] <

2 I

2

©

s P 4

c

©

)

7p]

I I I I I I
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

tab <- table(preds, HeatStabilitylO[test_ind])

tab
#i#
preds 1 2
1 59 16
2 725

plot standardised spectra with colours corresponding to correct/incorrect predictions

matplot (wavenums, t(scale(stdwaves[test_ind,])), type="n", xlab = "wavenumber (cm”-1)", ylab = "Standar
legend("topleft", legend = c("Incorrectly Classified", "Correctly Classified"), col = c("red", "gray"),
matlines(wavenums [rangel], t(scale(stdwaves[test_ind, rangel])), col = adjustcolor(c("red", "gray") [(pr
matlines(wavenums [range2], t(scale(stdwaves[test_ind, range2])), col = adjustcolor(c("red", "gray") [(pr
matlines(wavenums [range3], t(scale(stdwaves[test_ind, range3])), col = adjustcolor(c("red", "gray") [(pr

48

PCs: 10

Q

8]

% — Incorrectly Classified

o <+ - Correctly Classified

?

Q | '

< N 4 {

© [A ‘ f

o o e e

o o — el JEN NS -

c Y ,: L \.4 ‘; — = ‘*"_“:1‘:_‘ e ,"' ' —

® A R NY s |

O o _| | 1

o |

o

Q<

2 [

2

3 © 4

=

g

n | | | | | |
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

Test using 11 and 12 PCs in LDA
for(i in 12:13){

lda.fit <- lda(newspectral[,1:i], (stdwaves1$HS10) [train_ind])

predict classes for test data
preds <- predict(lda.fit, testspectral,1:i])$class
tab <- table(preds, HeatStability1O[test_ind])

plot standardised spectra with colours corresponding to correct/incorrect predictions

matplot(wavenums, t(scale(stdwaves[test_ind,])),

paste0O("PCs: ", i,", Misclassification Rate: ", round(l - sum(diag(tab)) / sum(tab), 2

legend("topleft", c("Incorrectly Classified"
matlines(wavenums [rangel], t(scale(stdwaves[test_ind,
adjustcolor(c("red", "gray") [(preds ==
matlines(wavenums [range2], t(scale(stdwaves[test_ind,
adjustcolor(c("red", "gray") [(preds ==
matlines(wavenums [range3], t(scale(stdwaves[test_ind,
adjustcolor(c("red", "gray") [(preds ==

49

D@ "wavenumber (cm™-1)", "Stand
, "Correctly Classified"), c("red", "gray"
rangel])),
HeatStabilitylO[test_ind])+1], 0.3), 1.5,
range2])),
HeatStability10[test_ind])+1], 0.3), 1.5,
range3])),
HeatStabilitylO[test_ind])+1], 0.3), 1.5,

PCs: 12, Misclassification Rate: 0.14

()

% — Incorrectly Classified

Q <+ - Correctly Classified

?

o

< AN — i

o

o

Q o

c =

)

) o

o3 |

gl

O <t

2] I

=

3T @ -

c

g

n | ! ! ! ! |
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)
PCs: 13, Misclassification Rate: O

()

% — Incorrectly Classified

Qo < - Correctly Classified

?

Q

< N —

gl

o

Q o

c

()

O N

o3 |

o

6 ¥ -

3

3 © 4

c

g

n | | | | | |
1000 1500 2000 2500 3000 3500

wavenumber (cm”-1)

From the results above, LDA appears to be very effective at classifying the heat stability of milk samples
based on their associated MIR spectrum, particularly when using at least the first 13 principal components
from the spectral data after performing principal component analysis.

50

	Install / Load Packages
	Data Preparation
	1 (a) Protein Traits Analysis
	kappa_casein / alpha_s1_casein / alpha_s2_casein / beta_casein
	alpha_lactalbumin / beta_lactoglobulin_a / beta_lactoglobulin_b

	1 (b) Technological Traits Analysis
	Casein_micelle_size / Heat_stability / pH
	RCT / k20 / a30 / a60

	2. Clusters
	3. Classification

