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Part 1: Analysis - English Premier League Data

1.1 Introduction

For the analysis section of this project, I have chosen to look at data relating to the English Premier League,
the top tier football competition in England. More specifically, the data set I am using will be comprised
of game data from ten different csv files corresponding to each football season between the years 2009 and
2019 [1].

Each file contains information on every game played in the related season, including the referee name, the
participating teams, the number of goals scored, the number of fouls committed, and the number of yellow
and red cards received by each team.

From the available data, I will focus on a subset of variables of particular interest to me and perform a
general analysis on the data in order to identify any interesting trends that may exist. Next, I will analyse
the data with respect to individual teams, in order to determine how each team ranks in terms of various
metrics, for example the highest overall win percentage. Finally, I plan to investigate a claim which is often
quoted in footballing circles yet I have never seen clear evidence to support it - that well known referee
Martin Atkinson is biased against Liverpool football club.

After completing the analysis above, the results from each section of analysis will be summarised and
discussed briefly, and finally I will discuss the observed results and any conclusions that can be drawn from
them.
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1.2 Analysis

1.2.1 Reading and Pre-Processing the Data

The data for the project is contained within 10 separate csv files, each with an identical column structure.
The mergeFiles function below takes a file path, corresponding to the path of the folder where the files are
stored, as an input. The function ignores all files in the specified folder which don’t start with the string
“season-” to ensure only the English Premier League data files are read.

Each csv file is read individually and saved to a list, and the Reduce function is then used to sequentially
apply the merge to each element of the list, returning a single data frame containing all the data from the
10 input files.

As the data set contains a relatively large number of columns, I have chosen to omit several columns from
the analysis, so these can be dropped from the data frame.

# load libraries
library("knitr")

# set folder path (file is saved in "Data" folder where markdown file is saved)
folderpath = paste(getwd(), "/Data",sep="")

# create function to merge files into a single data frame
mergeFiles = function(mypath){
# merge files starting with the string "season-" (in case other files are in the data folder)
filenames = list.files(path = mypath, full.names = TRUE, pattern = "ˆseason-")
# read each csv file and save in a list
datalist = lapply(filenames,

function(x){read.csv(file = x, header = TRUE, stringsAsFactors = FALSE)})
# sequentially apply merge function to each element of our list to create a single data frame
Reduce(function(x,y) {merge(x, y, all = TRUE)}, datalist)

}

# call mergeFiles function to create data frame of all csv files
EPL_raw <- mergeFiles(folderpath)
# drop all columns after column 23 (betting info, not of interest for this project)
EPL <- EPL_raw[1:23]
# drop other unwanted columns
EPL <- EPL[-c(1:2, 8:10, 14:15, 18:19)]

# print column names
names(EPL)

## [1] "HomeTeam" "AwayTeam" "FTHG" "FTAG" "FTR" "Referee"
## [7] "HS" "AS" "HF" "AF" "HY" "AY"
## [13] "HR" "AR"
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As can be seen above, the majority of the column names are not descriptive and are difficult to interpret.
Thankfully, a description for each of the column abbreviations contained in the data set can be found on-line
[2].

Data from the first 5 rows of the data set is displayed below. For convenience, the data has been displayed
in a transposed format to prevent columns from printing over multiple lines.

# give columns more sensible names
names(EPL) <- c("HomeTeam", "AwayTeam", "HomeGoals", "AwayGoals",

"Result", "Referee", "HomeTotalShots", "AwayTotalShots",
"HomeFoulsAgainst", "AwayFoulsAgainst", "HomeYellowCards",
"AwayYellowCards", "HomeRedCards", "AwayRedCards")

# print first 3 rows of data frame
kable(t(EPL[1:5, 1:14]))

1 2 3 4 5
HomeTeam Birmingham Liverpool Man City Stoke Sunderland
AwayTeam Arsenal Bolton Blackpool Everton Blackburn
HomeGoals 0 2 1 2 3
AwayGoals 3 1 0 0 0
Result A H H H H
Referee P Walton K Friend M Clattenburg A Marriner M Dean
HomeTotalShots 2 16 15 7 13
AwayTotalShots 18 10 8 15 11
HomeFoulsAgainst 7 11 11 14 13
AwayFoulsAgainst 9 16 9 8 9
HomeYellowCards 3 2 0 4 1
AwayYellowCards 1 2 0 1 2
HomeRedCards 0 0 0 0 0
AwayRedCards 0 0 0 0 0
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1.2.2 Visulaising the numeric data

Pairs plots

Pairs plots are an effective method of visually comparing multiple numeric columns at the same time. They
create a grid of scatter plots, plotting every combination of variables against each other. As there is a
relatively large number of variables in our data set, we can combine each home and away pair of columns
and create a new factor column to describe whether each row in the data frame contains home or away data.
Separate colours can then be used on the pairs plot to distinguish between home and away data.

# get numeric columns from data frame
nums <- unlist(lapply(EPL, is.numeric)); EPL_num <- EPL[nums]
# create separate home and away data frames (to reduce total number of columns)
homeEPL <- EPL_num[, grep("ˆHome", colnames(EPL_num))]
names(homeEPL) <- c("Goals", "TotalShots", "FoulsCommitted", "YellowCards", "RedCards")
homeEPL$HomeAway = "Home"
awayEPL <- EPL_num[, grep("ˆAway", colnames(EPL_num))]
names(awayEPL) <- c("Goals", "TotalShots", "FoulsCommitted", "YellowCards", "RedCards")
awayEPL$HomeAway = "Away"
# merge home and away data
homeaway_data <- merge(homeEPL, awayEPL, all=TRUE)
# create vector of 1s and 2s corresponding to home and away
vectorHomeAway <- NA
vectorHomeAway[homeaway_data$HomeAway == "Home"] <- 1
vectorHomeAway[homeaway_data$HomeAway == "Away"] <- 2

# plot pairs plot with home and away data in separate colours
pairs(homeaway_data[-c(6)], cex=0.3, pch = c(3,4)[vectorHomeAway], lwd=0.2,

col = c(rgb(0.4,1,1, alpha = 0.3), rgb(1,0.2,0.2, alpha = 0.3))[vectorHomeAway])
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Many of the numeric columns in the data only feature a small number of unique values. As a result, there is
significant overlap in the data when plotted on the scatter plots above. One way to deal with this is to add
jitter to the data in the data frame, which adds a small amount of noise to each value. The jitter function
can be applied to each column using lapply.

A number of other additions can be made to the pairs plot to improve it, such as a title, a legend and smoothed
trend lines on each plot. These trend lines can be particularly useful to assist with quickly visualizing trends,
in particular when there is significant variance in the data and a trend is not immediately apparent when
observing a scatterplot.

# add jitter to each column of the dataframe
df_jitter<- data.frame(lapply(homeaway_data[-c(6)], jitter))

# plot paris plot again
pairs(df_jitter[-c(6)], cex=0.3,

col = c(rgb(0.4,1,1, alpha = 0.3), rgb(1,0.2,0.2, alpha = 0.3))[vectorHomeAway],
pch = c(3,4)[vectorHomeAway],
main = "Pairs Plot of Numeric Data with Home/Away Data Visible",
oma=c(3,3,6.5,8), lwd=0.2, panel = panel.smooth)

# Allow objects to be drawn outside plotting region
par(xpd=TRUE)
# Plot legend to the top right of the pairs plot
legend("right", legend = c("Home","Away"),

col=c(rgb(0.4,1,1, alpha = 0.7), rgb(1,0.2,0.2, alpha = 0.7))[vectorHomeAway],
pch = c(3,4)[vectorHomeAway], cex = 0.5)
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Summary statistics

Summary statistics for each column, including mean, median and quartile values, can be obtained using the
summary function as shown below.

From inspecting the mean values returned for each column, we can see that home advantage appears to be a
significant factor in the data, with the average number of goals and total shots from home teams both greater
than the equivalent values for away teams, and with the number of fouls committed, number of yellow cards
and number of red cards all lower for home teams than for away teams.

# plot summary statistics for numeric columns
summary(EPL_num)

## HomeGoals AwayGoals HomeTotalShots AwayTotalShots
## Min. :0.000 Min. :0.00 Min. : 0.00 Min. : 0.00
## 1st Qu.:1.000 1st Qu.:0.00 1st Qu.:10.00 1st Qu.: 8.00
## Median :1.000 Median :1.00 Median :14.00 Median :11.00
## Mean :1.571 Mean :1.18 Mean :14.18 Mean :11.23
## 3rd Qu.:2.000 3rd Qu.:2.00 3rd Qu.:17.00 3rd Qu.:14.00
## Max. :9.000 Max. :7.00 Max. :43.00 Max. :30.00
## HomeFoulsAgainst AwayFoulsAgainst HomeYellowCards AwayYellowCards
## Min. : 0.00 Min. : 1.00 Min. :0.000 Min. :0.000
## 1st Qu.: 8.00 1st Qu.: 9.00 1st Qu.:1.000 1st Qu.:1.000
## Median :11.00 Median :11.00 Median :1.000 Median :2.000
## Mean :10.62 Mean :11.13 Mean :1.478 Mean :1.771
## 3rd Qu.:13.00 3rd Qu.:13.00 3rd Qu.:2.000 3rd Qu.:3.000
## Max. :24.00 Max. :26.00 Max. :7.000 Max. :9.000
## HomeRedCards AwayRedCards
## Min. :0.00000 Min. :0.00000
## 1st Qu.:0.00000 1st Qu.:0.00000
## Median :0.00000 Median :0.00000
## Mean :0.05947 Mean :0.08711
## 3rd Qu.:0.00000 3rd Qu.:0.00000
## Max. :2.00000 Max. :2.00000
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Boxplots

Boxplots can be used to visualise the distributions of variables, while also displaying the median, first quartile
and third quartile values to allow simple comparisons of different variable distributions. The variables
below have been ordered by their median values, making it easier to compare the centre of each variable’s
distribution.

# create order vector of columns ordered by median
ord <- order(sapply(EPL_num,median))
# Plot boxplot
boxplot(EPL_num[ord], las=2, main = "Boxplots of Numeric Variables",

cex.axis = 0.4, col = rainbow(length(EPL_num)), ylab = "Value")
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Histograms

Histograms are another form of plot that can be used to visualise the distribution of numeric variables, and
determine which values occur most frequently.

# set plot window to 2 rows by 3 columns
par(mfrow=c(2,3))

# drop Home/Away column from data frame so all data is numeric
df_num <- homeaway_data[-c(6)]

# create histogram of each column
for (i in 1:length(df_num)){
hist(df_num[,i], xlab = colnames(df_num)[i],

main = paste("Histogram of\n", colnames(df_num)[i]),
cex.main=1, col=rainbow(length(df_num))[i], breaks = seq(-1,max(df_num[,i])))

}
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Frequency tables and barplots

Frequency tables can be used to visualise categorical variable information. The table below shows the
frequencies of each result type for the data set, with ‘A’ corresponding to a win for the away team, ‘H’ a win
for the home team, and ‘D’ a draw. The barplot below conveys the same information from the frequency
table. Barplots make it easier to visualise the magnitude of each frequency in the table.

# create frequency table of result column
kable(table(EPL$Result))

Var1 Freq
A 1102
D 940
H 1758

# increase LHS margin of plot for labels
par(mar=c(4,8,4,2))
# create barplot of frequency table data
barplot(table(EPL$Result), col = rainbow(3), names.arg = c("Away Win", "Draw", "Home Win"),

main = "Barplot of Frequency of Results", xlab = "Frequency", horiz=TRUE, las=1)
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There is a clear difference between the number of wins by home teams and away teams, a further indication
that home advantage was a contributing factor in the data.
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1.2.3 Modelling the data with known distributions

Another thing that can be looked at for our numeric data is whether any common distributions can effectively
model each individual variable. For this analysis, we will look at the number of goals scored by each team,
the number of yellow cards issued, the number of fouls committed and the total shots takes by each team,
and we will look at Poisson, Hurdle and normal distributions to determine which best fits each variable’s
distribution.

Poisson distribution model

The poissonLogLike function below returns the log-likelihood value for a variable when modelled using a
Poisson distribution. The inbuilt dpois function can be used in this case to calculate the density for each
value in the given variable.

# poisson distribution log likelihood function (param = lambda)
poissonLogLike <- function(param, values) return(sum(log(dpois(values, param))))

Hurdle distribution model

No inbuilt function is available in base R to calculate a Hurdle distribution density value, so a custom
function can be created to achieve this. The dhurdle function below takes and input value or vector of
values, and a param vector containing the θ and λ values for the desired distribution, and returns the Hurdle
probability desnity value. A log likelihood function for the Hurdle distribution is also defined below.

dHurdle <- function(x, param) {
# param[1] = theta, param[2] = lambda
# set P(x) to a vector of zeros the length of x initially
Px = rep(0, length(x))

# checks that theta is a probability (i.e. between 0 and 1)
if (param[1] >= 0 & param[1] <= 1) {
# loop through all elements in x
for (i in 1:length(x)) {
# check what value of x[i] is and calculate corresponding P(x) value
if (x[i] == 0) {

# if x = 0, P(x) = theta
Px[i] = param[1]

} else if (x[i] > 0) {
# if x > 0, evaluate for P(x)
Px[i] = (1 - param[1]) * ((param[2]ˆx[i]) * exp(-param[2])) /
(factorial(x[i]) * (1 - exp(-param[2])))

} else {
# if x < 0, print warning message
print("Can't evaluate for negative values of x!")

} # x[i] if else ]
} #i for loop

} #theta if check

return(Px)
}
# calculate log-likelihood for Hurdle model
hurdleLogLike <- function(param, values) return(sum(log(dHurdle(values, param))))
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Normal distribution model

Again, a density function is already available for normal distributions, dnorm. A third log-likelihood function
is defined below to calculate the log-likelihood value for a normal distribution with given mean and standard
deviation values.

# calculate log-likelihood for normal distribution
normLogLike <- function(param, values) return(sum(log(dnorm(values, mean=param[1], sd=param[2]))))

Plotting histograms and distribution curves

A single function can now be created to take an input vector, calculate the optimum parameters for each of
the three distributions of interest, and plot a histogram of the data with each of the calculated distribution
curves overlaid.

distributionPlot <- function(data) {
# get name of input object in string format, extract column name (after '$')
dataString <- deparse(substitute(data))
dataString <- gsub(".*[$]", "", dataString)

# calculate mean and standard deviation of data
dataMean <- mean(data); dataSD <- sd(data)
# get optimum lambda value for Poisson distribution (should equal mean)
optimResP <- optimise(poissonLogLike, c(dataMean*0.5, dataMean*1.5), values=data, maximum = TRUE)
# get vector of Poisson distributed values between 0 and max(data)
poisvec <- dpois(seq(0, max(data)), optimResP$maximum)

# get optimum theta and lambda values for Hurdle distribution
optimResH <- optim(par=c(exp(-dataMean), dataMean), fn = hurdleLogLike, values = data,

control = list(fnscale=-1))
# get vector of Hurdle distributed values between 0 and max(data)
hurdvec <- dHurdle(seq(0, max(data)), optimResH$par)

# get optimum mean and sd values for normal distrbution
optimResN <- optim(par=c(dataMean, dataSD), fn = normLogLike, values = data,

control = list(fnscale=-1))
# get vector of normally distributed values between 0 and max(data)
normvec <- dnorm(seq(0,max(data)), optimResN$par[1], optimResN$par[2])

# get frequency table of data, set plot ymax to 1.5 times the max density value
freq <- table(data); ymax <- max(freq)/sum(freq)*1.5
# plot histogram with line of each distribution overlaid
hist(data, freq = FALSE, breaks = seq(-1, max(data)), col=rgb(0.5,0.5,0,0.05), ylim = c(0, ymax),

main = paste("Histogram of", dataString), xlab = dataString, border = rgb(0.1,0.1,0.1,0.1))
lines(seq(0, max(data)), hurdvec, col=rgb(0,0.8,0,0.7), type='l', lwd=2, lty=1)
lines(seq(0, max(data)), poisvec, col=rgb(1,0,0.7), type='l', lwd=2, lty=2)
lines(seq(0, max(data)), normvec, col=rgb(0,0,1,0.5), type='l', lwd=2, lty=4)
# add legend to plot
legend("topright", legend = c("Hurdle", "Poisson", "Normal"),

col=c(rgb(0,0.8,0,0.7), rgb(1,0,0,0.6), rgb(0,0,1,0.5)), lwd = 2, lty=c(1,2,4))
return(c(dataMean, dataSD, optimResP$maximum, optimResH$par[1],

optimResH$par[2], optimResN$par[1], optimResN$par[2]))
}
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Using the function created above, we can look at a number of different variables from our data, and plot
their histogram along with a best fit Poisson, Hurdle and normal distribution curve, as shown below.

# set plot window to 2 rows x 2 columns
par(mfrow=c(2,2))
# call distributionPlot function for all relevant data columns
distGoals <- distributionPlot(homeaway_data$Goals)
distYCs <- distributionPlot(homeaway_data$YellowCards)
distShots <- distributionPlot(homeaway_data$TotalShots)
distFouls <- distributionPlot(homeaway_data$FoulsCommitted)
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1.2.4 Team Specific Analysis

It is also possible to analyse the data with respect to the individual teams featured in the data set. Below,
a new data frame (dfTeams) has been created with a single row for each team. A number of interesting
metrics can be calculated from the data, such as overall win percentage, the average of net goal difference,
net shots, net fouls committed and net cards received for each individual team, as done below.

# create columns of net figures (home minus away)
EPL$HA_NetGoals <- EPL$HomeGoals - EPL$AwayGoals
EPL$HA_NetShots <- EPL$HomeTotalShots - EPL$AwayTotalShots
EPL$HA_NetFouls <- EPL$HomeFoulsAgainst - EPL$AwayFoulsAgainst
EPL$HA_NetYcards <- EPL$HomeYellowCards - EPL$AwayYellowCards
EPL$HA_NetRcards <- EPL$HomeRedCards - EPL$AwayRedCards

# get vector of all teams in the data set, ordered alphabetically
Teams <- sort(unique(EPL$HomeTeam))
# create new data frame, let first column equal the uniqueTeams vector
dfTeams <- data.frame(Teams)

# create NULL vectors for win% and net figure columns per teams
winPercentCol <- NULL; netGoalsCol <- NULL; netFoulsCol <- NULL;
netYCsCol <- NULL; netRCsCol <- NULL;

# loop through each team in the data
for (team in Teams) {
# calculate sum of total wins for current team (home or away)
teamWins <- sum((EPL$HomeTeam==team & EPL$Result=="H") | (EPL$AwayTeam==team & EPL$Result=="A"))
# calculate sum of total games for current team (home or away)
teamTotalGames <- sum(EPL$HomeTeam==team | EPL$AwayTeam==team)
# calculate win% for current team, append to vector
winPercent <- teamWins / teamTotalGames * 100
winPercentCol <- c(winPercentCol, winPercent)

# calculate mean of net goals scored for the current team, append to vector
# note: minus number when team played away as original figure is (home minus away)
netGoals <- mean(EPL$HA_NetGoals[EPL$HomeTeam==team]) - mean(EPL$HA_NetGoals[EPL$AwayTeam==team])
netGoalsCol <- c(netGoalsCol, netGoals)
# calculate mean of net fouls committed for the current team, append to vector
# note: minus number when team played away as original figure is (home minus away)
netFouls <- mean(EPL$HA_NetFouls[EPL$HomeTeam==team]) - mean(EPL$HA_NetFouls[EPL$AwayTeam==team])
netFoulsCol <- c(netFoulsCol, netFouls)
# calculate mean of net yellow cards received for the current team, append to vector
# note: minus number when team played away as original figure is (home minus away)
netYCs <- mean(EPL$HA_NetYcards[EPL$HomeTeam==team]) - mean(EPL$HA_NetYcards[EPL$AwayTeam==team])
netYCsCol <- c(netYCsCol, netYCs)
# calculate mean of net red cards received for the current team, append to vector
# note: minus number when team played away as original figure is (home minus away)
netRCs <- mean(EPL$HA_NetRcards[EPL$HomeTeam==team]) - mean(EPL$HA_NetRcards[EPL$AwayTeam==team])
netRCsCol <- c(netRCsCol, netRCs) }

# create new columns in data frame, equal to newly created vectors
dfTeams$WinPC <- winPercentCol; dfTeams$NetGoals <- netGoalsCol;
dfTeams$NetFouls <- netFoulsCol; dfTeams$NetYC <- netYCsCol; dfTeams$NetRC <- netRCsCol
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Overall win percentage

One method of quantifying the success of each team in our data set over the past 10 years is to calculate the
overall percentage of games that they won. The barplot below illustrates the win percentage of each team
that featured in the premier league in at least one season over the past 10 years, ordered from highest win
percentage to lowest.

The plot highlights a notable gap between the top 6 teams, who all have a win percentage above than 50
percent, while each of the remaining teams have a win percentage below 40 percent.

# plot barplot of total win percentage for each club, from highest to lowest
barplot(dfTeams$WinPC[order(-dfTeams$WinPC)], ylab = "Percentage", las=2, cex.names = 0.5,

col = rev(heat.colors(length(dfTeams$Teams))),
names.arg = dfTeams$Teams[order(-dfTeams$WinPC)],
main = "Overall Win Percentage per Football Team")
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Net goal difference

Another metric that can help visualise the success of a team is net goal difference, which can be calculated
by subtracting the number of goals scored by each team from the number of goals conceded.

The first table below lists the top 6 teams in terms of net goal difference. Unsurprisingly, the listed teams
are the same 6 teams with the highest win percentage, albeit with a slightly different order.

# print top 6 teams in terms of net goal difference
kable(head(dfTeams[order(-dfTeams$NetGoals), c("Teams", "NetGoals")]))

Teams NetGoals
19 Man City 2.542105
11 Chelsea 1.857895
20 Man United 1.757895
1 Arsenal 1.578947
18 Liverpool 1.542105
31 Tottenham 1.310526

The bottom 6 teams in terms of net goal difference are shown in the table below. Again, there is significant
overlap between these teams and the 6 teams with the lowest win percentage, with the exception of Mid-
dlesbrough who had the lowest overall win percentage but do not feature in the bottom 6 teams in terms of
net goal difference.

# print bottom 6 teams in terms of net goal difference
kable(tail(dfTeams[order(-dfTeams$NetGoals), c("Teams", "NetGoals")]))

Teams NetGoals
25 QPR -1.473684
16 Hull -1.539474
26 Reading -1.578947
24 Portsmouth -1.684211
10 Cardiff -2.026316
15 Huddersfield -2.210526
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Discipline

Several different metrics can be considered when assessing how disciplined a football teams is, for example
the number of fouls committed, number of yellow and red cards received and number of penalties conceded.
As a number of factors can affect the overall number of fouls committed and cards issued in a given game,
such as the strictness of the referee and weather conditions, it can also be useful to consider the overall net
fouls, net yellow cards and net red cards when assessing the discipline of a team.

It is difficult to quantify discipline in a single number as there are so many factors that contribute to it.
However, given the available data, I will try to quantify discipline of each team by considering a combination
of their net fouls, net yellow cards and net red cards. To ensure equal weighting of each of these factors, each
variable can be standardised to give a distribution with a mean value of zero and standard deviation of one.
For each team, the average value of these three standardised figures gives an indication of how disciplined
they were, with lower values corresponding to better discipline. For convenience, I will refer to the metric
which combines the standardised net fouls and net yellow and red cards as the Discipline Score, with low
negative values corresponding to good discipline and high poistive values corresponding to poor discipline.

The table below shows the 6 most disciplined teams in the data based off the criteria specified above.
Bournemouth is a noticeable outlier in the data, with a value over two standard deviations below the mean
value.

# standardise net fouls and net cards columns and calculate average of the 3 columns
dfTeams$DisciplineScore <- (scale(dfTeams$NetFouls) +

scale(dfTeams$NetYC) +
scale(dfTeams$NetRC)) / 3

# print top 6 teams in terms of overall discipline
kable(head(dfTeams[order(dfTeams$DisciplineScore),

c("Teams", "NetFouls", "NetYC", "NetRC", "DisciplineScore")]))

Teams NetFouls NetYC NetRC DisciplineScore
7 Bournemouth -5.092105 -0.9605263 -0.1578947 -2.2436581
1 Arsenal -2.347368 -0.6421053 -0.0368421 -1.0365164
30 Swansea -3.015038 -0.8872180 0.0075188 -1.0331599
11 Chelsea -2.915789 -0.8052632 0.0052632 -0.9839412
31 Tottenham -1.400000 -0.6947368 -0.0368421 -0.9379733
26 Reading -3.157895 -0.4736842 0.0000000 -0.8519355

Conversely, the 6 teams with the poorest discipline are shown in the table below, with Middlesbrough,
Watford, Tottenham and Reading all having a value greater than one standard deviation above the mean.

# print bottom 6 teams in terms of overall discipline
kable(tail(dfTeams[order(dfTeams$DisciplineScore),

c("Teams", "NetFouls", "NetYC", "NetRC", "DisciplineScore")]))

Teams NetFouls NetYC NetRC DisciplineScore
4 Blackburn 3.000000 0.2982456 0.0877193 0.9066601
24 Portsmouth 2.157895 1.3157895 0.0000000 0.9155423
21 Middlesbrough 3.421053 0.6842105 0.0526316 1.0013121
32 Watford 2.894737 1.0526316 0.0657895 1.2145223
8 Brighton 6.868421 0.8947368 0.0526316 1.5941204
6 Bolton 4.017544 0.7894737 0.1403509 1.6130473
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1.2.5 Referee Bias

We can also analyse the data with respect to the referees who oversaw each game in the data set. This
analysis will focus specifically on Liverpool Football Club, and will aim to identify if clear bias is shown by
any referee in favour of or against Liverpool, with particular focus on referee Martin Atkinson.

Firstly, a data frame containing only matches where Liverpool featured can be obtained by filtering out
rows where Liverpool were neither the home nor away team. A frequency table can be used to determine
how many games each referee in the data set oversaw, as shown below. A number of referees in this table
oversaw very few Liverpool games, and as such there is a higher likelihood that any results relating to them
will be skewed. To overcome this, only referees who oversaw at least 10 Liverpool games in the data will be
considered when analysing referee bias.

# get data frame only including games featuring Liverpool
dfLiv <- EPL[EPL$HomeTeam=="Liverpool" |EPL$AwayTeam=="Liverpool",]
# create frequency table for referees in Liverpool data frame
table(dfLiv$Referee)

##
## A Marriner A Taylor A Wiley C Kavanagh C Pawson
## 36 32 4 3 17
## G Scott H Webb J Moss K Friend L Mason
## 4 19 16 24 22
## L Probert M Atkinson M Clattenburg M Dean M Halsey
## 13 41 17 2 9
## M Jones M Oliver N Swarbrick P Dowd P Tierney
## 12 32 14 25 5
## P Walton R East R Madley S Attwell S Bennett
## 11 7 8 6 1

# get vector of refs in data set with at least 10 appearances, ordered alphabetically
Referees <- (sort(unique(dfLiv$Referee)))[table(dfLiv$Referee)>=10]
# drop rows with referees that feature less than 10 times
dfLiv <- dfLiv[dfLiv$Referee %in% Referees,]

Win percentage

One high level method of assessing a referee’s bias against a team is to compare the team’s win percentage
during games that the referee oversaw with the overall win percentage of the team. While there are various
factors that can affect the final result of any individual game, more so than the influence of a referee, it is
likely that there will be some significant variation in Liverpool’s win percentage under each referee in the
data set. However, a significant difference between the win percentage under a particular referee and the
overall mean win percentage could suggest an element of bias introduced to the results by the referee.

The Liverpool win percentage under each referee has been calculated below and plotted on a barplot, along
with a horizontal line indicating the overall mean win percentage for Liverpool. To facilitate the easy
identification of Martin Atkinson on the barplot, the bar corresponding to Liverpool’s win percentage in
games he oversaw has been coloured green.

# create new data frame, let first column equal the uniqueTeams vector
dfRefs <- data.frame(Referees)
# create NULL vector for win% per referee
LivWinCol <- NULL
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# loop through each team in the data
for (ref in Referees) {
# calculate sum of total Liverpool wins for current referee (home or away)
LivWins <- sum((dfLiv$HomeTeam=="Liverpool" & dfLiv$Result=="H" & dfLiv$Referee==ref) |

(dfLiv$AwayTeam=="Liverpool" & dfLiv$Result=="A" & dfLiv$Referee==ref))
# calculate total number of games for Liverpool (home or away)
LivTotalGames <- sum(dfLiv$Referee==ref)
# calculate win% for current team, append to vector
LivWinPercent <- LivWins / LivTotalGames * 100
LivWinCol <- c(LivWinCol, LivWinPercent)}

# create new column in data frame, equal to Liverpool win% per referee
dfRefs$LivWinPC <- LivWinCol

# create colour vector for barplot, with Martin Atkinson in green
colvec <- heat.colors(length(dfRefs$Referees))
colvec[dfRefs$Referees[order(dfRefs$LivWinPC)]=="M Atkinson"] <- "green"
# plot barplot of Liverpool win percentage for each referee, from highest to lowest
barplot(dfRefs$LivWinPC[order(dfRefs$LivWinPC)], ylab = "Percentage", las=2, cex.names = 0.5,

col = colvec,
names.arg = dfRefs$Referees[order(dfRefs$LivWinPC)],
main = "Liverpool Win Percentage per Referee")

# draw line at overall mean win% value for Liverpool
abline(h = dfTeams$WinPC[dfTeams$Teams=="Liverpool"]);
# draw text on mean line
text(x = 5, y = dfTeams$WinPC[dfTeams$Teams=="Liverpool"],

labels = paste("Liverpool Mean Win Percentage: ",
round(dfTeams$WinPC[dfTeams$Teams=="Liverpool"], 2), "%", sep = ""),

pos = 3, cex = 0.6)

H
 W

eb
b

M
 J

on
es

A
 M

ar
rin

er

P
 W

al
to

n

M
 O

liv
er

M
 A

tk
in

so
n

J 
M

os
s

L 
M

as
on

N
 S

w
ar

br
ic

k

M
 C

la
tte

nb
ur

g

P
 D

ow
d

A
 T

ay
lo

r

K
 F

rie
nd

C
 P

aw
so

n

L 
P

ro
be

rt

Liverpool Win Percentage per Referee

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

70

Liverpool Mean Win Percentage: 52.11%

18



Discipline

Another method of assessing a referees bias against a team is to look at the Discipline Score defined earlier
for the team in games overseen by each individual referee. Again the discipline takes the average value of the
standardised net fouls (number of fouls against the team minus number of fouls against the opposing team),
the standardised net yellow cards (number of yellow cards received by the team minus number of yellow
cards received by the opposing team) and the standardised net red cards (number of red cards received by
the team minus number of red cards received by the opposing team). Standardising and taking the average
of these three metrics gives an equal weighting to each metric in the final Discipline Score value.

In general, a positive Discipline Score value indicates that more fouls are committed and cards are issued
to a given team than their opponents on average, while a negative Discipline Score value indicates that less
fouls are committed and less cards are issued to a given team than their opponents on average.

Below, a barplot displays Liverpool’s Discipline Score value under each referee that oversaw at least 10 of
their games in the data set, again with Martin Atkinson identified using a green coloured bar.

# create NULL vectors for net figure columns per referees
LivNetFoulsCol <- NULL; LivNetYCsCol <- NULL; LivNetRCsCol <- NULL;

for (ref in Referees) {
# calculate sum of total Liverpool wins for current referee (home or away)
LivWins <- sum((dfLiv$HomeTeam=="Liverpool" & dfLiv$Result=="H" & dfLiv$Referee==ref) |

(dfLiv$AwayTeam=="Liverpool" & dfLiv$Result=="A" & dfLiv$Referee==ref))

# calculate mean of Liverpool net fouls for the current referee, append to vector
# note: minus number when team played away as original figure is (home minus away)
LivNetFouls <- mean(dfLiv$HA_NetFouls[dfLiv$HomeTeam=="Liverpool" & dfLiv$Referee==ref]) -
mean(dfLiv$HA_NetFouls[dfLiv$AwayTeam=="Liverpool" & dfLiv$Referee==ref])

LivNetFoulsCol <- c(LivNetFoulsCol, LivNetFouls)

# calculate mean of Liverpool net yellow cards for the current referee, append to vector
# note: minus number when team played away as original figure is (home minus away)
LivNetYCs <- mean(dfLiv$HA_NetYcards[dfLiv$HomeTeam=="Liverpool" & dfLiv$Referee==ref]) -
mean(dfLiv$HA_NetYcards[dfLiv$AwayTeam=="Liverpool" & dfLiv$Referee==ref])

LivNetYCsCol <- c(LivNetYCsCol, LivNetYCs)

# calculate mean of Liverpool net red cards received for the current referee, append to vector
# note: minus number when team played away as original figure is (home minus away)
LivNetRCs <- mean(dfLiv$HA_NetRcards[dfLiv$HomeTeam=="Liverpool" & dfLiv$Referee==ref]) -
mean(dfLiv$HA_NetRcards[dfLiv$AwayTeam=="Liverpool" & dfLiv$Referee==ref])

LivNetRCsCol <- c(LivNetRCsCol, LivNetRCs)
}

# create new columns in data frame, equal to newly created vectors
dfRefs$LivNetFouls <- LivNetFoulsCol; dfRefs$LivNetYC <- LivNetYCsCol;
dfRefs$LivNetRC <- LivNetRCsCol

# standardise Liverpool net fouls and net cards columns, calculate average of the 3 columns
dfRefs$LivStdNetFoulCard <- (scale(dfRefs$LivNetFouls) +

scale(dfRefs$LivNetYC) +
scale(dfRefs$LivNetRC)) / 3

# drop rows with NAs (cases where a referee hasn't overseen at least 1 home and 1 away game)
dfRefs <- na.omit(dfRefs)
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# create colour vector for barplot, with Martin Atkinson in green
colvec <- rev(heat.colors(length(dfRefs$Referees)))
colvec[dfRefs$Referees[order(dfRefs$LivStdNetFoulCard)]=="M Atkinson"] <- "green"

# create barplot of Liverpool discipline rating per referee
barplot(dfRefs$LivStdNetFoulCard[order(dfRefs$LivStdNetFoulCard)], las=2, cex.names = 0.5,

col = colvec, names.arg = dfRefs$Referees[order(dfRefs$LivStdNetFoulCard)],
main = "Liverpool Discipline per Referee", ylab = "Discipline Score")
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1.3 Results

Analysis of Home and Away data

The table below lists the mean values for home and away teams for number of goals scored, total number
of shots attempted, fouls committed, yellow cards received and red cards received. In general, home teams
appear to perform better than away teams, scoring 0.4 more goals, taking 3 more shots, and winning 17%
more games on average than away teams.

Home teams also appear to receive a certain level of preferential treatment, conceding 0.5 less fouls and
receiving 0.3 less yellow cards per game on average than away teams.

Home Away Difference
MeanGoals 1.57 1.18 0.39
MeanTotalShots 14.18 11.23 2.95
MeanFoulsAgainst 10.62 11.13 -0.51
MeanYellowCards 1.48 1.77 -0.29
MeanRedCards 0.06 0.09 -0.03
MeanWinPercentage 46.26 29.00 17.26

Analysis of data distributions

The table below summarises the mean, standard deviation, and optimum parameters values calculated for
Poisson, Hurdle and Normal distribution models for each of the variables tested in section 1.2.3.

As expected, the optimum λ values calculated for each Poisson distribution were equal to the mean value of
the associated variable. Likewise, the optimum mean and standard deviation parameters calculated for each
Normal distribution were equal to the mean and standard deviation of associated variables.

distGoals distYCs distShots distFouls
Mean 1.3753 1.6249 12.7053 10.8761
Standard Deviation 1.2594 1.2508 5.3257 3.4996
Poisson: opt. lamba 1.3753 1.6249 12.7053 10.8761
Hurdle: opt. theta 0.2810 0.1983 0.0004 0.0001
Hurdle: opt. lamba 1.4751 1.6295 12.7065 10.8765
Normal: opt. mean 1.3753 1.6249 12.7053 10.8761
Normal: opt. stand. dev. 1.2594 1.2508 5.3257 3.4996

Looking at the histograms and distribution plots in section 1.2.3, both the Hurdle and Poisson modelled
distributions appear to be sufficient for modelling the distributions of the goals, yellow cards and fouls data.
However they fail to accurately model the shots data. The normal distribution is more effective at modelling
the shots data, as well as the fouls data, but it does not perform as well as the Poisson and Hurdle models
when modelling the goals and yellow cards data.
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Team specific analysis

As noted earlier, there is a significant difference in the overall win percentage statistics between the 6 top
performing football teams in England over the past 10 years who all achieved an average win percentage
greater than 50 percent, and the remaining teams who’s percentages were all below 40 percent.

A similar trend was witnessed when looking at net goal difference for each team in the data, with the same
6 teams achieving the highest figures once again.

When analysing the discipline of each team based on the net number of fouls committed, net yellow cards
received and net red cards received, there was some level of overlap between the top performing teams and the
most disciplined teams, with Arsenal, Chelsea and Tottenham all featuring in the top 6 of both categories.

Analysis of referee bias

The table below shows the standardised win percentage for Liverpool per referee, and the “discipline score”
for Liverpool per referee, as visualised earlier in the plots in section 1.2.5.

While Liverpool’s win percentage in games overseen by Martin Atkinson is lower than their overall mean
winning percentage, a standardised win percentage value of 0.24 standard deviations below the mean for
games which he was in charge would suggest that he does not have a significant influence on the results
of Liverpool’s games. More notably, Liverpool’s win percentage in games overseen by Howard Webb was
2.2 standard deviations below their overall mean win percentage, indicating a stringer likelihood of Howard
Webb having an influence on Liverpool’s results than Martin Atkinson.

Liverpool’s “discipline score” under each referee is shown in the LivStdNetFoulCard column in the table,
and interestingly this value is negative for Martin Atkinson suggesting that he gives more fouls against and
issues more cards to Liverpool’s opponents on average than to Liverpool, so again, there is no clear evidence
of bias demonstrated here. Alternatively, Peter Walton’s discipline score is almost 1.6 standard deviations
above the mean, suggesting that he punishes Liverpool more than their opponents at a higher rate than any
other referee.

Referees scaledLivWinPC LivStdNetFoulCard
3 C Pawson 1.1500276 -1.37038573
1 A Marriner -0.6176158 -0.68026548
8 L Probert 2.2158772 -0.56697853
4 H Webb -2.1991916 -0.33218927
9 M Atkinson -0.2393318 -0.31355051
7 L Mason -0.1329394 -0.31186790
6 K Friend 0.9575826 -0.16163413
13 N Swarbrick -0.1329394 -0.10261353
2 A Taylor 0.4123216 -0.07451195
12 M Oliver -0.4055699 0.21588454
5 J Moss -0.1329394 0.29827615
10 M Clattenburg 0.1236540 0.35472085
14 P Dowd 0.3905112 0.45083777
11 M Jones -0.8599541 1.01670118
15 P Walton -0.5294928 1.57757655
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1.4 Conclusions

A number of conclusions can be drawn from the data analysis above with relatively high confidence. Firstly,
and unsurprisingly, there is a clear advantage for home teams in the English Premier League, with home
teams winning at a higher rate, attempting more shots and scoring more goals on average than away teams.
There is also some evidence of referees being biased in favour of home teams, calling fouls and issues cards
to away teams at a higher rate than to home teams.

However, it is not clear from the available data whether that is related to additional pressure from the home
crowd, or if it is a result of home teams dominating games more frequently than away teams and having
a greater amount of possession, which in turn could result in away teams having to tackle more often and
potentially commit more fouls. This would be an interesting area of further research, and obtaining data on
attendance, possession and tackle count statistics could help identify what is the greater contributing factor
to the greater number of fouls committed and cards received by away teams.

From the distribution modelling section of the analysis, the distributions of the number of goals scored,
yellow cards issued and fouls committed by each team could all be modelled successfully using both Poisson
models and Hurdle models. The goals and yellow cards data didn’t appear to follow a normal distribution,
but the distribution of the number of fouls committed could also be successfully be described using a
normal distribution, and the total number of shots also appeared to follow a distribution similar to a normal
distribution, albeit slightly more right skewed. Overall, the three distribution models considered during this
analysis appear sufficient for modelling the distributions of the Premier League goals, yellow cards, shots
and fouls data.

The most significant finding from the team specific analysis was the apparent gap between the “Big Six”, the
top six team in the Premier League over the past decade, and the remaining teams. While it was expected
that these six teams would have the been the top performing teams in the data, the magnitude of the gap
between these teams and the remaining teams was somewhat unexpected, with over 10% of a difference
between the win percentage of the sixth best performing team and next best team. This is likely due to
the high level of consistency shown by each of the “Big Six” over the past decade, with other teams rarely
achieving a top six position.

Finally, from the available data there is no clear evidence to suggest that Martin Atkinson is biased against
Liverpool football club. While Liverpool’s win percentage in games that he oversaw was slightly slower than
their overall win percentage, it was not significant to a level that would suggest bias against them. When
considering Liverpool’s “discipline score” under each referee, again there was no significant evidence of bias
from Atkinson against Liverpool.

However, we would ideally consider various other factors when assessing whether any evidence of bias exists
in Martin Atkinson’s refereeing of Liverpool games, but for this project we were limited by the available data
in the data set. Data on the number of penalties awarded for and against Liverpool, and more recently data
relating to the number of decisions overturned by VAR could also provide a useful insight into the level of
bias shown by a given referee against a given team, and would be interesting areas of future analysis.

1.5 References
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Part 2: R Package - DataExplorer

2.1 Introduction

2.1.1 Overview

Exploratory Data Analysis (EDA) is a process frequently used in data science applications when performing
initial investigations on a dataset. It is an essential part of any effective data analysis workflow, helping
data scientists to summarise the contents and main characteristics of datasets, detect mistakes and missing
values in the data, visualise relationships between variables in the data, and determine suitable explanatory
and dependent variables for statistical modelling. As Exploratory Data Analysis covers such a broad range
of analysis techniques, it is typically the most time-consuming element in data science.

The DataExplorer package aims to simplify this process, providing functions to perform various EDA
techniques on entire datasets using minimal lines of code, and to automate the entire EDA process [1]. This
package focuses on three specific tasks relating to data analysis:

1. Exploratory Data Analysis
2. Feature Engineering
3. Data Reporting

Below, these tasks will be explored in detail to highlight some of the main functions provided by the Data-
Explorer package for each task, with numerous examples and visualisations using data from the English
Premier League data set from part 1.

2.1.2 Package Installation

Before the DataExplorer package can be used, it must be installed. The package is not currently available on
the CRAN repository [2], but the latest version of the package can be installed using the command below.

remotes::install_github("boxuancui/DataExplorer")

Please note that the above command is not evaluated in the current notebook as I have already previously
installed this package.

Once the package has been installed, it can be loaded into the notebook using the library function. The
plotting functions within the DataExplorer package are based on the ggplot2 library, so this can also be
loaded into the notbook.

library("DataExplorer")
library("ggplot2")
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2.1.3 Data

To facilitate with the demonstration of the DataExplorer package’s functionality, a subset of the English
Premier League dataset from part 1 will be used. The EPLhome data frame below is a copy of the EPL
data frame from part 1, but with all “Away” columns removed. The top 6 rows from this data frame are
displayed below.

# create data frame with all "Home" columns from EPL data frame
EPLhome <- EPL[, c("HomeTeam", "HomeGoals", "Result", "Referee", "HomeTotalShots",

"HomeFoulsAgainst", "HomeYellowCards", "HomeRedCards")]
# remove Home from column names
names(EPLhome) <- gsub("Home", "", names(EPLhome))
# display first 6 rows from data set
kable(head(EPLhome))

Team Goals Result Referee TotalShots FoulsAgainst YellowCards RedCards
Birmingham 0 A P Walton 2 7 3 0
Liverpool 2 H K Friend 16 11 2 0
Man City 1 H M Clattenburg 15 11 0 0
Stoke 2 H A Marriner 7 14 4 0
Sunderland 3 H M Dean 13 13 1 0
Tottenham 1 H M Jones 13 11 2 0
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2.2 Exploratory Data Analysis

2.2.1 Data Structure Visualisation

Before beginning Exploratory Data Analysis, is can be useful to inspect the structure of any dataset or
datasets to be analysed. The plot_str function can be used to quickly visualise the structure of a given
dataset or list of datasets. It returns an interactive plot in html format displaying the name and data type
of each column in the given datasets.

Note that the plot_str function doesn’t work in this markdown file when knitted to a pdf format document.
Therefore, the code below is not evaluated in this file. An image of the resulting plot obtained using these
commands is displayed below.

# create list of dataframes
datasetList <- list(EPLhome, EPL)
# plot structure of dataframe list
plot_str(datasetList)
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2.2.2 Introduction to the Data

The introduce function can be used to generate a table containing basic descriptive figures for a given dataset,
such as the total number of rows and columns, the number of discrete and continuous columns, the number
of missing values and the total number of observations.

# create table of general data frame statistics
introduce(EPLhome)

## rows columns discrete_columns continuous_columns all_missing_columns
## 1 3800 8 3 5 0
## total_missing_values complete_rows total_observations memory_usage
## 1 0 3800 30400 174064

To visualise figures from the table above, the plot_intro function can be used. This produces a barplot
displaying the proportion of discrete to continuous columns, the proportion of columns with all values
missing, the proportion of rows with no missing values,and the proportion of missing observations in the
dataset, all in percentage form.

# plot data frame statistics
plot_intro(EPLhome)
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Memory Usage: 170 Kb

From the table and plot above, we can quickly identify that there are no missing observations in the EPLhome
dataset, and that we are ready to continue
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2.2.3 Missing Data

While the functions above provide feedback on the overall number of missing values in the data they fail to
indicate which columns the missing values are located. The plot_missing function can be used to produce
a barplot showing what percentage of the overall missing values in the data are located in each column.

As the EPLhome data frame has no missing values, a new data frame (EPLhomeNAs) with random NA
values introduced to a number of the columns can be created and used to test this function.

# create copy of EPLhome
EPLhomeNAs <- EPLhome

# create vector corresponding to probability of choosing NA
probvec <- c(0.01, 0.05, 0.2, 0.9)
# loop through each of the first 4 columns, randomly introduce NAs with varying probability
for(col in 1:4){

for(row in 1:nrow(EPLhomeNAs)){
EPLhomeNAs[row, col] <- sample(c(EPLhomeNAs[row, col], NA), 1,

prob = c(1-probvec[col], probvec[col]))
}}

# call plot_missing function on the data
plot_missing(EPLhomeNAs)
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From the plot outputted above, we can immediately identify which columns have missing data entries and
the proportion of total entries in each column that are missing. The plot also advises on the usability of
each column based on these percentages, indicating whether each column is good in its current state, if it is
satisfactory or whether it should be removed from the data set before continuing the analysis.
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2.2.4 Bar charts

The DataExplorer package provides a bar plot function to plot the frequency distributions of all discrete
variables in the dataset. As ggplot2 is the foundation of all plots within this package, the plots can be
modified by setting the ggtheme and theme_config arguments using the same commands as for ggplot2
plots. As an example, the font size in the plots below can be reduced so that all values are clearly visible.

# create barplots of categorical variables
plot_bar(EPLhome, ggtheme = theme_bw(base_size=8))
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It is also possible to plot the distribution of a continuous variable for all discrete variables in a dataset by
setting the with argument in the plot_bar function. The red card distribution of all discrete variables in the
EPLhome dataset are plotted below.

# create barplots of categorical variables with Red Cards
plot_bar(EPLhome, with = "RedCards", ggtheme = theme_light(base_size=8))
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The plot_bar function can also be used the visualise the frequency of a distribution by a specified discrete
variable using the by argument. By default, these plots display a filled bar for each category with the
proportion of each of the ‘by’ variable categories represented using a different colour, as shown in the top
two plots below.

To view the actual frequency of each category for each of the ‘by’ categories, the by_position argument can
be set to ‘dodge’. The result is shown in the lower two plots below.

# create barplots of categorical variables split by Result
plot_bar(EPLhome, by = "Result", ggtheme = theme_classic(base_size=8))
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plot_bar(EPLhome, by = "Result", by_position = "dodge",
ggtheme = theme_minimal(base_size=8))
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2.2.5 Histograms and Density Plots

To visualise the distributions of all continuous variables in a dataset, the plot_histogram function can be
used. Again, only a single line of code is required to plot all histograms simultaneously, without a need to
exclude the discrete variables before calling the function.

# plot histograms of continuous variables
plot_histogram(EPLhome)
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Similarly, the plot_density function can be used to plot the estimated density distribution for each of the
continuous variables in a given dataset.

# plot density distributions of continuous variables
plot_density(EPLhome)
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2.2.6 QQ plots

Quantile-Quantile plots (QQ plots) can be used to visualise the deviation of a variable from a specified
probability distribution. This can help to determine if a data transformation may be required to move the
variable’s distribution closer to the desired distribution. The plot_qq function generates normal distribution
QQ plots for each continuous variable in the given data set.

The function can also take a by argument to view each QQ plot by a discrete variable in the data set. The
plots below show the QQ plots for each continuous variable in the EPLhome data frame, split by Result.

# plot qq plots for each continuous variable in the dataset by Result
plot_qq(EPLhome, by="Result")
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2.2.7 Boxplots

Another common method of visualising the distribution of a continuous variable is the boxplot. Boxplots are
particularly effective at comparing variable distributions side by side. This is commonly used to determine
whether a discrete variable has a significant relationship with a continuous variable.

The plot_boxplot function generates separate boxplots for each continuous variable in a given data set, with
each variable split by a specified discrete variable using the by argument.

From the boxplots below which have been split by Result, we can immediately identify a significant relation-
ship between the number of goals scored by the home team and the final result of the game, due to the clear
difference between each of distribution boxes in the Goals plot.

# plot boxplots of each continuous variable split by Result
plot_boxplot(EPLhome, by="Result")
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2.2.8 Correlation Analysis

Correlation matrices are commonly generated during Exploratory Data Analysis to determine which variables
in the data are most strongly linearly related. The plot_correlation function can be used to visualise the
correlation matrix for a given dataset using heatmap colouring to emphasise the magnitude of each individual
correlation coefficient, while also displaying the correlation coeeficient between each variable.

The function accepts both discrete and continuous variables, but can be specified to omit either type using
the type argument. To avoid extremely large correlation plots being generated, the function only includes
discrete variables with a maximum number of categories of 20 by default. This can also be adjusted using
the maxcat argument.

In the correlation plot below, we can quickly identify from the relatively dark red square in the bottom right
hand corner that there is a relatively strong positive relationship between the number of goals scored by
home teams and home teams winning a game.

# plot correlation heatmap for the dataset
plot_correlation(EPLhome)
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2.2.9 Principal Component Analysis

Principal Component Analysis (PCA) is frequently used in cases where data sets contain a large number of
variables, and it is difficult to compare the relationships between every single variable. The DataExplorer
package provides a plot_prcomp function to perform and visualise PCA on a given dataset.

Again, a number of optional arguments can be used to modify the look of the generated plots, and to modify
settings relating to the analysis, such as variance_cap which specifies the maximum cumulative explained
variance figure allowed for all of the principal components, and the maximum number of categories allowed
for discrete variables to be considered in the analysis.

The plots below represent the PCA for the EPLhome dataset, with discrete variables with more than 5
categories not considered.

# perform PCA on dataset
plot_prcomp(EPLhome, maxcat = 5L)
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2.2.10 Scatter Plots

Scatter plots compare pairs of variables against one another, and can be a useful tool in identifying rela-
tionships between variables. The plot_scatterplot function plots each variable in a given dataset on separate
scatter plots against a specified variable using the by argument. The first 4 scatter plots below plot each of
the continuous variables in the EPLhome dataset against the number of shots from home teams.

# plot scatter plot of continuous variables vs shots
plot_scatterplot(split_columns(EPLhome)$continuous, by="TotalShots", nrow = 4L, ncol = 2L,

ggtheme = theme_gray(base_size=8))
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In cases where there are a large number of data points causing the scatter plots to be too cluttered, a random
sample of a specified number of data points can be plotted by setting the sampled_rows argument. Each of
the plots below only show 50 sampled data points.

# plot scatter plot of continuous variables vs shots (50 samples)
plot_scatterplot(split_columns(EPLhome)$continuous, by="TotalShots", nrow = 4L, ncol = 2L,

ggtheme = theme_gray(base_size=8), sampled_rows = 50L)
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2.3 Feature Engineering

Another important process used in data analysis is feature engineering. This is the creation of new variables
or features using information from existing variables. Engineered variables can often provide more insight
into the data than the original variables alone.

2.3.1 Replacing Missing Values

The set_missing function can be used to replace missing values in a dataset for both continuous and discrete
variables. To demonstrate this, additional columns can be added to the EPLhome dataset with different
proportions of randomly assigned NA values. We can visualise the number of values missing from the dataset
using the plot_intro and plot_missing functions used earlier.

# add columns with incomplete data (randomly assigned NA values)
EPLhome$Incomplete1 <- sample(c("a","b","c",NA), nrow(EPLhome), replace = TRUE)
EPLhome$Incomplete2 <- sample(c(1,rep(NA,99)), nrow(EPLhome), replace = TRUE)
EPLhome$Incomplete3 <- sample(c(1:99,NA), nrow(EPLhome), replace = TRUE)

# plot introduction stats for dataset
plot_intro(EPLhome)
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# plot missing stats for dataset
plot_missing(EPLhome)
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From these plots we can see that approximately 11 percent of the total observations in the data are missing,
and three columns in the data have missing values.
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If we want to replace all continuous missing values with a particular value, and all discrete missing values
with another particular value, we can replace all the missing values using a single command. The set_missing
command can take a list of two values, one numeric and one non-numeric, as an argument and use those
values as replacements for the continuous and discrete missing values.

If there are columns in the dataset whose missing values should not be replaced or need to be replaced with
a different value, the exclude argument can be used to specify these columns to be excluded from the current
operation.

The function below replaces all continuous missing values with a value of 0, and all discrete missing values
with a value of “unknown”. Using the plot_missing function on the data again, we can see that all missing
values have been removed.

# replace missing values with 0 if continuous, and "unknown" if discrete
EPLhome <- set_missing(EPLhome, list(0L, "unknown"))

## Column [Incomplete2]: Set 3751 missing values to 0

## Column [Incomplete3]: Set 51 missing values to 0

## Column [Incomplete1]: Set 987 missing values to unknown

# plot missing stats for dataset
plot_missing(EPLhome)
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2.3.2 Dropping Features

It is common to drop features from a dataset that are no longer of interest, particularly when preparing to
fit data to a statistical model. The drop_columns function provides a simple method of quickly dropping
columns from a data frame by specifying either the name or the index of each column.

As the three columns added to the EPLhome data frame in section 2.3.1 are no longer of use, they can be
dropped using the drop_columns function.

EPLhome <- drop_columns(EPLhome, c("Incomplete1", "Incomplete2", "Incomplete3"))
head(EPLhome)

## Team Goals Result Referee TotalShots FoulsAgainst YellowCards
## 1 Birmingham 0 A P Walton 2 7 3
## 2 Liverpool 2 H K Friend 16 11 2
## 3 Man City 1 H M Clattenburg 15 11 0
## 4 Stoke 2 H A Marriner 7 14 4
## 5 Sunderland 3 H M Dean 13 13 1
## 6 Tottenham 1 H M Jones 13 11 2
## RedCards
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
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2.3.3 Grouping sparse categories

In cases where discrete variables contain a large number of categories, it can often be beneficial to group the
lower frequency values into a single new category. For example, the Referee variable in the EPLhome data
frame has 33 unique categories, with a large disparity between the frequencies of the the lowest frequency
categories and the highest frequency categories.

The group_category function can be used to group the lowest frequency variables in a discrete variable that
make up a specified proportion of the total frequency of all the categories using the threshold argument.
Below, the group_category function is used to group the bottom 50 percent of the Referee data in EPLhome
into a new category.

Using the plot_bar function to visualise the updated Referee variable, we can see that the “OTHER” column
was introduced, and the total number of categories was reduced from 33 to 8.

EPLhome <- group_category(data = EPLhome, feature = "Referee", threshold = 0.5, update = TRUE)
plot_bar(EPLhome$Referee)
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It is also possible to group categories by a continuous variable rather than frequency. The measure argument
within the group_category function can be used to specify this continuous variable.

Below, the group_category function is used to group the bottom 50 percent in terms of the number of fouls
conceded for home teams into a new category. The result is a reduction in the number of Team categories
from 36 to 11.

EPLhome <- group_category(data = EPLhome, feature = "Team", threshold = 0.5,
measure = "FoulsAgainst", update = TRUE)

plot_bar(EPLhome$Team)
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2.3.4 Creating Dummy Variables

It is often required to transform discrete variables into multiple “dummy” binary columns representing each
individual category, in cases where discrete variables are selected for use in machine learning algorithms.
This can be achieved using the dummify function, which takes a data frame as an input and returns the
same data frame but with all eligible discrete variable columns transformed into multiple dummy columns.
Similar to other functions from the DataExplorer package, the maxcat argument can be specified to only
convert discrete variables that don’t exceed the specified number of categories.

Below, the dummify function is used on the EPLhome with a maximum number of categories limit for the
discrete variables set to 5. Printinh the top 6 rows from the resulting data frame, we can see that the Team
and Referee columns are unaffected as they have greater than 5 categories each, but the Result column has
been replaced by three new binary columns, Result_A, Result_D and Result_H.

# print top 6 rows of *EPLhome* data frame after dummify
head(dummify(EPLhome, maxcat = 5L))

## 2 features with more than 5 categories ignored!
## Team: 11 categories
## Referee: 8 categories

## Goals TotalShots FoulsAgainst YellowCards RedCards Team Referee
## 1 0 2 7 3 0 OTHER OTHER
## 2 2 16 11 2 0 Liverpool OTHER
## 3 1 15 11 0 0 Man City M Clattenburg
## 4 2 7 14 4 0 Stoke A Marriner
## 5 3 13 13 1 0 Sunderland M Dean
## 6 1 13 11 2 0 Tottenham OTHER
## Result_A Result_D Result_H
## 1 1 0 0
## 2 0 0 1
## 3 0 0 1
## 4 0 0 1
## 5 0 0 1
## 6 0 0 1
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2.3.5 Updating Feautres

Data transformation is frequently performed during data analysis. Functions can be quickly applied to a
column or multiple columns in a dataset using the update_columns function. This function takes a data
frame, a vector of column names or column indices, and a function to be applied to each of the specified
columns.

For example, it is possible to convert the RedCards and Team columns in the EPLhome data frame to factor
variables by specifying the as.factor function within update_columns, as shown below.

It is also possible to define custom function to be applied to specified columns. Below, a power transform is
applied to the FoulsAgainst column to square all of its values. By comparing the structure of the EPLhome
data frame before and after these columns have been updated using the str function, we can see that both
the RedCards and Team columns are converted to factors, and that the values in the FoulsAgainst column
have been squared.

# view structure of EPLhome
str(EPLhome)

## ’data.frame’: 3800 obs. of 8 variables:
## $ Team : chr "OTHER" "Liverpool" "Man City" "Stoke" ...
## $ Goals : int 0 2 1 2 3 1 1 2 1 0 ...
## $ Result : chr "A" "H" "H" "H" ...
## $ Referee : chr "OTHER" "OTHER" "M Clattenburg" "A Marriner" ...
## $ TotalShots : int 2 16 15 7 13 13 17 11 8 10 ...
## $ FoulsAgainst: int 7 11 11 14 13 11 8 7 7 10 ...
## $ YellowCards : int 3 2 0 4 1 2 1 0 1 0 ...
## $ RedCards : int 0 0 0 0 0 0 0 0 0 0 ...
## - attr(*, ".internal.selfref")=<externalptr>

# convert RedCards and Team columns to factors, perform power transform on Fouls column
EPLhome <- update_columns(EPLhome, c("RedCards", "Team"), as.factor)
EPLhome <- update_columns(EPLhome, "FoulsAgainst", function(x) xˆ2)
# view structure of EPLhome
str(EPLhome)

## ’data.frame’: 3800 obs. of 8 variables:
## $ Team : Factor w/ 11 levels "Arsenal","Chelsea",..: 7 4 5 8 9 10 7 11 9 7 ...
## $ Goals : int 0 2 1 2 3 1 1 2 1 0 ...
## $ Result : chr "A" "H" "H" "H" ...
## $ Referee : chr "OTHER" "OTHER" "M Clattenburg" "A Marriner" ...
## $ TotalShots : int 2 16 15 7 13 13 17 11 8 10 ...
## $ FoulsAgainst: num 49 121 121 196 169 121 64 49 49 100 ...
## $ YellowCards : int 3 2 0 4 1 2 1 0 1 0 ...
## $ RedCards : Factor w/ 3 levels "0","1","2": 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, ".internal.selfref")=<externalptr>
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2.4 Data Reporting

2.4.1 Creating Quick Reports

Perhaps the most powerful tool in the the DataExplorer library is the create_report function. Using a single
line of code, it is possible to create a full report for a given dataset which returns the outputs from most of
the EDA functions described in section 2.2, and saves them in a nicely formatted html document.

This is an extremely quick way of summarising the structure and contents of a dataset. The command below
shows the syntax for creating a report of the EPLhome dataset, and saving the report with the file name
“STAT40620_Project_EPLhome_Report.html”.

Please note that the create_report function won’t work in the current markdown file when knitting to pdf
(as the report is of html format), so the command below is not evaluated in this file. However, the command
was executed in RStudio in order to produce the report in html format, and the report was then saved to
pdf format. This report is appended to the end of the pdf produced from this markdown file as Attachment
1.

# create report of EPLhome dataset
create_report(EPLhome, output_file = "STAT40620_Project_EPLhome_Report.html")

2.4.2 Report Configuration

A number of other arguments can be passed to the create_report function, such as output_dir which specifies
the location where the report will be saved, y which can be used to define one variable in the dataset as a
response variable and treated as such in the outputted plots, and config which allows a list of configuration
arguments to be passed to each of the functions within create report.

The config argument allows users to select which functions they want to run in the report, and pass any
formatting arguments to individual functions in the report such as plot themes and font sizes. The config-
ure_report function generates a default template for the configuration list which can be passed to the config
argument, but it is also possible to configure the report using a standard list.

The code below gives an example of using the configure_report function to alter the configuration for a
report, and passing the configuration to the create_report function. Again, the code below is indicative only
and is not evaluated in the current file.

# set up configuration for report
config <- configure_report(
add_plot_str = FALSE,
add_plot_qq = FALSE,
add_plot_prcomp = TRUE,
add_plot_boxplot = TRUE,
add_plot_scatterplot = FALSE,
plot_boxplot_args = list("by" = "Result"),
global_ggtheme = quote(theme_minimal(base_size = 14))

)
# create report with specified configuration settings
create_report(EPLhome, config = config)
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2.7 Conclusion

As demonstrated above, the DataExplorer package offers a wide range of easy to use functions to perform
quick but thorough Exploratory Data Analysis on a given data set.

It greatly reduces the number of commands required to perform a complete data analysis, and allows for
simple customisation and configuration of all outputted plots, which is aided by the fact that the plots
produced are based on the popular ggplot2 package.

The create_report function encompasses most of the package’s functionality in a single command, allowing
users to produce complete EDA reports for a given dataset with one line of code.

Overall, this package greatly simplifies the EDA process, automating many of the data processing and
visualisation steps, while still allowing for a high level of customisation and configuration in reported plots.
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Part 3: Functions/Programming - Forward Stepwise AIC Regres-
sion

3.1 Overview

3.1.1 Background

The Akaike information criterion (AIC) is a method used to evaluate the quality of a statistical model. It
is frequently used when comparing multiple models to determine which model best fits the given data, with
lower AIC values corresponding with better models.

One method of finding a suitable regression model from a given data set is using forward stepwise AIC
regression. This is an iterative process which first starts off by evaluating the AIC of a model with an
intercept term only, and then proceeds to fit different models with each possible predictor variable in the
data set to determine which model returns the lowest AIC. The variable that minimises the AIC is then
permanently added to the model.

The process is then repeated, adding each predictor variable not already included in the model to a new
model and calculating the AIC. Again, the variable that minimises the AIC will will be permanently added
to the model. The process ends when no further variable can be added to the current model to reduce its
AIC.

3.1.2 Forward Stepwise AIC Regression function

The functionality described above can be implemented using functions in R. To achieve this, I have created
a new R package, called StepwiseRegAIC. This package contains the following functions:

• scaleNumeric - function that takes a data frame as an input argument, and standardises all numeric
columns in the data frame.

• getModelAICadjR2 - function that takes a dat frame and a vector of column names as input argu-
ments, generates a linear model for the given columns, and returns the AIC and adjusted R-squared
values for the model.

• fwdAIC - function that takes a data frame and a string corresponding to the name of the column
to be used as the response variable in a linear regression model, and determines the best selection of
predictor variables to minimise the AIC of the model. The function returns an object of the S3 class
‘AICmod’, which includes a list of the chosen predictor columns, a list of AIC values for each iteration
of the stepwise regression process and a list of each adjusted R-squared value for each iteration of the
stepwise regression process.

• plot.AICmod - function that overrides the default plot function for objects from the ‘AICmod’ class.

• print.AICmod - function that overrides the default print function for objects from the ‘AICmod’
class.

• summary.AICmod - function that overrides the default summary function for objects from the
‘AICmod’ class.

Each of these functions include a functioning R help file with an example to help users understand what the
function does and how to use it.

The following sections will show the code used for each function and summarise how each of the functions
work. Finally, the StepwiseRegAIC package will be loaded into the file, and the functions will be tested
using the English Premier League data from part 1.
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3.2 scaleNumeric function

The scaleNumeric function takes a single input argument in the form of a data frame. The indices of
all numeric columns in the data frame are identified by applying the is.numeric function to each column.
The scale function is then applied to each of the identified columns to standardise them, modifying their
distributions to have a mean value of 0 and standard deviation of 1.

The commented header section above the function definition below is used to define a functioning R help
file. The same comment structure is included above each function in the package to define an appropriate
R help files. After loading the package, these help files can be observed by typing “?” before the function
name.

As the StepwiseRegAIC package has already been created and will loaded into this markdown file later,
the function below does not need to be defined again here. Therefore, the code below, along with all the
remaining functions, will not be evaluated in this file.

#' Function to standardise all numeric columns in a data frame
#'
#' Standardises all numeric variables to give them a mean value of 0 and
#' standard deviation of 1, without affecting categorical variables
#'
#' @param my_df Data frame. Can contain both numeric and categorical columns.
#'
#' @return Data frame with standardised numeric columns.
#' @export
#' @examples
#' y <- c(4,5,6)
#' X1 <- c(1,2,2)
#' X2 <- c("a","b","c")
#' X3 <- c(-1,5,10)
#' df1 <- data.frame(X1, X2, X3, y)
#' df_standard <-scaleNumeric(df1)
scaleNumeric <- function(my_df) {

my_df <- data.frame(my_df)

# get index of each numeric type column in df
numeric_cols <- sapply(my_df, is.numeric)
# apply scale function to all numeric columns to standardise them
#df[, numeric_cols] <- sapply(df[, numeric_cols], scale)
my_df[numeric_cols] <- scale(my_df[numeric_cols])

# return data frame with standardised numeric columns
return(my_df)

}

48



3.3 getModelAICadjR2 function

The function below takes a data frame and a vector of column names as input arguments. The formula
function is used to define the formula to input into the linear model, based on the columns specified in the
column vector. The first column name specified in the vector is used as the response variable in the model,
and the remaining columns included in the vector are used as predictor variables.

After defining a linear regression model using the lm function, the adjusted R-squared value for the model
is calculated using the following equation:

AdjustedR2 = (1 −R2)(n− 1)
n− p− 1

where n is the total number of samples or rows in the data, and p is the number of predictor variables.

The function returns the adjusted R-squared value along with the AIC value for the model, which is calculated
using the AIC function. Again, the commented rows above the function definition are used to create an R
help file for the function.

#' Get AIC and adjusted R-squared values for linear model
#'
#' Generates a linear model from specified columns in a given data frame, and
#' returns the Akaike information criterion and adjusted R-squared for the model.
#'
#' @param my_df Data frame. Must contain all columns to be included in the model.
#' @param column_vec Vector of strings corresponding to the columns from 'my_df'
#' to be included in the model. First element in the vector will be used as the
#' response variable, and all remaining elements will be used as predictor variables.
#' Element names must match column names in 'my_df' exactly.
#'
#' @return Vector with AIC value for the model as the first element, and
#' adjusted R-squared value for the model as the second element.
#' @export
#' @examples
#' y <- rnorm(20) + 1:20
#' X1 <- rnorm(20) + seq(0,8, length.out = 20)
#' X2 <- rnorm(20) + seq(50,1, length.out = 20)
#' X3 <- rnorm(20)
#' df1 <- data.frame(X1, X2, X3, y)
#' myModelAICajdR2 <- getModelAICadjR2(df1, c("y", "X1", "X2", "X3"))
getModelAICadjR2 <- function(my_df, column_vec) {
# get formula for linear model using columns in column_vec
myformula <- formula(my_df[column_vec])
# create linear regression model using current formula
model <- lm(myformula, data = my_df)
# calculate adjusted Rˆ2 value for the model
R2 <- summary(model)$r.squared
AdjR2 <- 1 - (1 - R2) * (nrow(my_df) - 1) / (nrow(my_df) - (length(column_vec)-1) - 1)
# return AIC and adjusted Rˆ2 values for the model
return(c(AIC(model), AdjR2))

}
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3.4 fwdAIC function

The forward stepwise AIC regression process is implemented within the fwdAIC function. This function
takes a data frame and a string corresponding to the column name for the chosen response variable to be
considered. The scaleNumeric function defined earlier is used to standardise all the numeric columns in the
given data set.

An initial model is created using only a column of ones for the first predictor variable, as a baseline model,
and the AIC for the model is obtained. The function then implements the process described in section 3.1.1,
iteratively adding each possible predictor variable in the data frame to the current model to determine if it
improves the model by comparing its AIC value to the AIC value of the previous model.

For each variable that is added to the model, the AIC value and adjusted R-squared are calculated and saved
to separate vectors. The function creates a list called AIC_out, and assigns in the s3 class called ‘AICmod’.
The AIC vector, adjusted R-squared vector, the final list of predictor variables chosen for the model, and
the formula used for the final model are all saved to this object of class ‘AICmod’, which is then returned
by the function.

#' Forward Stepwise AIC Regression
#'
#' Determines the best predictor variables to include in a linear regression model
#' for a given response variable using forward stepwise AIC regression.
#'
#' @param my_df Data frame containing the response variable and all predictor variables
#' to be considsered for the linear regression model.
#' @param response_var String corresponding to the response variable to be used for the
#' model. String must match the name of the appropriate column in 'my_df' exactly.
#' @return Object of AICmod class. Includes the best predictor variables determined for
#' the model, and AIC and adjusted R-squared values for each tested iteration of the model.
#' @export
#' @examples
#' y <- rnorm(20) + 1:20
#' X1 <- rnorm(20) + seq(0,8, length.out = 20)
#' X2 <- rnorm(20) + seq(50,1, length.out = 20)
#' X3 <- rnorm(20)
#' df1 <- data.frame(X1, X2, X3, y)
#' fwdAIC(df1, "y")
fwdAIC <- function(my_df, response_var){

# create empty list for AIC function outputs, set class to 'AICmod'
AIC_out <- list()
class(AIC_out) <- 'AICmod'
# standardise numeric columns in the data frame
my_df <- scaleNumeric(my_df)
# add "Ones" column for testing intercept only in the model
my_df$Ones <- 1
# create vector to contain columns to be included in linear model
# (initially only dependent variable and intercept)
model_columns <- c(response_var, "Ones")

# get AIC value for base model (intercept only) and set it to bestAIC. Set bestCol value to NULL
AICadjR2 <- getModelAICadjR2(my_df, model_columns)
bestAIC <- AICadjR2[1]
bestCol <- NULL
# create vectors to hold all AIC and Adjusted Rˆ2 values
AICvec <- c(AICadjR2[1])
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AdjR2vec <- c(AICadjR2[2])
newAdjR2 <- 0
# drop "Ones" from the model_columns vector, and drop the "Ones" column from df
model_columns <- head(model_columns, -1)
my_df$Ones <- NULL
# set updateModel boolean to TRUE initially
updateModel <- TRUE

# continue to add variables to model until AIC value can no longer be reduced
while(updateModel){
# reset updateModel boolean (will be set TRUE again if additional column improves the model)
updateModel <- FALSE

# loop through all variables (column names) in data frame
for (var in names(my_df)){
# if current variable not in list
if(!var %in% model_columns){
# append variable to list
model_columns <- c(model_columns, var)
# calculate AIC / adj. Rˆ2 for model with latest list of columns from df
newAICadjR2 <- getModelAICadjR2(my_df, model_columns)
# if the latest AIC < bestAIC, update bestAIC, newAdjR2 and bestCol values,
# set updateModel boolean
if(newAICadjR2[1] < bestAIC){
bestAIC <- newAICadjR2[1]
newAdjR2 <- newAICadjR2[2]
bestCol <- var
updateModel <- TRUE

}
# drop last item of list (i.e. current var val)
model_columns <- head(model_columns, -1)

}# if
}# for (var)

# if updateModel is TRUE, append the bestCol value to the vector of model columns
if (updateModel) {
model_columns <- c(model_columns, bestCol)
AICvec <- c(AICvec, bestAIC)
AdjR2vec <- c(AdjR2vec, newAdjR2)

} # if
}# while (updateModel)

# add objects to AIC_out
AIC_out$minAIC <- bestAIC
AIC_out$maxAdjR2 <- newAdjR2
AIC_out$predictorVars <- model_columns[-1]
AIC_out$responseVar <- model_columns[1]
AIC_out$AICvals <- AICvec
AIC_out$AdjR2vals <- AdjR2vec
AIC_out$formula <- formula(my_df[,model_columns])
# return AIC_out
return(AIC_out)

}
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3.5 plot.AICmod function

The function below overwrites the default plot function for objects from the ‘AICmod’ class. This plot
function takes both the vector of AIC values and the vector of adjusted R-squared values from the ‘AICmod’
object and plots the values of both on a single plot.

To clearly distinguish between the data that is plotted, the AIC values are plotted in red with the corre-
sponding y-axis values also displayed in red on the left hand side of the plot, and the adjusted R-squared
values are plotted in blue with the corresponding y-axis values displayed in blue on the right hand side of
the plot.

Aplot legend is also included to distinguish between the AIC and adjusted R-squared data points.

#' AICmod Plot
#'
#' Plot function for 'AICmod' class
#'
#' @param AIC.obj Object of class 'AICmod'
#'
#' @rdname plot.AICmod
#'
#' @export
#'
#' @examples
#' y <- rnorm(20) + 1:20
#' X1 <- rnorm(20) + seq(0,8, length.out = 20)
#' X2 <- rnorm(20) + seq(50,1, length.out = 20)
#' X3 <- rnorm(20)
#' df1 <- data.frame(X1, X2, X3, y)
#' res <- fwdAIC(df1, "y")
#' plot(res)
plot.AICmod <- function(AIC.obj) {
# Temporarily change plot margins, reset after function exit
op <- par(mar=c(5.1,4.1,4.1,5.1))
on.exit(par(op))

# Plot AIC values for each model in red
plot(AIC.obj$AICvals, xaxt="n", yaxt="n", xlab = "Latest Variable Added Model",

ylab = "", type = "b", col = "red", pch=15, las=2, cex.axis=0.7, bty="n", frame.plot = FALSE,
main = paste("AIC and Adjusted R-squared Values for Linear Models\n(Response Variable =",

AIC.obj$responseVar, ")"))
# add vertical grid lines
grid(ny=NA)
# draw AIC values on LHS y-axis in red and set axis label text to AIC (in red)
axis(2, at = pretty(range(AIC.obj$AICvals)), las=2, cex.axis=0.8, col.axis = "red", col="red")
mtext("AIC", side = 2, line = 3, col = "Red")

# Set up x-axis ticks
axis(1, at = 1:length(AIC.obj$AICvals), labels = FALSE, col = NA, col.ticks = 1, line = -0.25)
# set predictor variable names as x-axis tick values, display at angle to avoid overlap
text(x = 1:length(AIC.obj$AICvals), par("usr")[3]-1,

labels = c("Intercept", AIC.obj$predictorVars),
srt = 20, pos = 1, xpd = TRUE, cex = 0.7)

# allow second function to be plotted
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par(new=TRUE)

# Plot adj. Rˆ2 values for each model in blue
plot(AIC.obj$AdjR2vals, xaxt="n", type = "b", col = "blue", pch=17,

bty = "n", axes=FALSE, xlab="", ylab="")
# draw adj. Rˆ2 values on RHS y-axis in blue and set axis label text to Adjusted Rˆ2 (in blue)
axis(4, at = pretty(range(AIC.obj$AdjR2vals)), las=2, cex.axis=0.8,

col.axis = "blue", col = "blue")
mtext("Adjusted R-squared", side = 4, line = 3, col = "Blue")

# add plot legend at RHS of plot
legend("right", legend = c("AIC", "Adjusted R-squared"), col = c("red", "blue"),

lty = 1, pch = c(15, 17))
}
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3.6 print.AICmod function

The default print function has also been overwritten for ‘AICmod’ objects by the print.AICmod function.
The function uses a series of cat function to print a description of each element of the ‘AICmod’ object being
displayed in a clear readable format.

This function prints the formula used for the final model, the number of predictor variables chosen, the
names of the predictor variables, the response variable, and the AIC and adjusted R-squared values of the
final model.

#' AICmod Print
#'
#' Print function for the 'AICmod' class
#'
#' @param AIC.obj Object of class 'AICmod'
#'
#' @return N/A
#' @export
#'
#' @examples
#' y <- c(4,5,6)
#' X1 <- c(1,2,2)
#' X2 <- c(10,9,6)
#' df1 <- data.frame(X1, X2, y)
#' res <- fwdAIC(df1, "y")
#' print(res)
#' res
print.AICmod <- function(AIC.obj) {

cat("\nFinal Model Formula:\n", deparse1(AIC.obj$formula))
cat("\n\nnumber of predictor variables chosen:\n", length(AIC.obj$predictorVars))
cat("\n\nPredictor Variables Chosen:\n")
for (var in AIC.obj$predictorVars) cat("*", var, "\n")
cat("\nResponse Variable:\n")
cat("*", AIC.obj$responseVar, "\n")
cat("\nFinal Model AIC Value:\n", AIC.obj$minAIC)
cat("\n\nFinal Model R-Squared Value:\n", AIC.obj$maxAdjR2)

}
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3.7 summary.AICmod function

Finally, the default summary function for ‘AICmod’ objects has been overwritten by the summary.AICmod
function. This function creates a table of each of the AIC and adjusted R-squared values obtained for each
iteration of fitting the linear models. It then prints this table, while also printing the related predictor
variable added for each iteration of the model to each row.

#' AICmod Summary
#'
#' Summary function for 'AICmod' class
#'
#' @param AIC.obj Object of class 'AICmod'
#'
#' @return N/A
#' @export
#'
#' @examples
#' y <- c(4,5,6)
#' X1 <- c(1,2,2)
#' X2 <- c(10,9,6)
#' df1 <- data.frame(X1, X2, y)
#' res <- fwdAIC(df1, "y")
#' summary(res)
summary.AICmod <- function(AIC.obj) {

# create table of AIC and adjusted Rˆ2 values for each iteration of the model
tbl <- matrix(nrow = length(AIC.obj$AICvals), ncol = 2)
colnames(tbl) <- c("AIC", "Adj Rˆ2")
# set first row name as Intercept only, remaining rownames will be pred. variable
# names with + prepended
rownames(tbl) <- paste(c("Intercept term only", paste("+", AIC.obj$predictorVars)))
# add AIC and adj. Rˆ2 values to each row of the table
for (i in 1:length(AIC.obj$AICvals)) {
tbl[i,1] <- round(AIC.obj$AICvals[i], 2)
tbl[i,2] <- round(AIC.obj$AdjR2vals[i], 3)

}
# Print text and then print the table below
cat("AIC and Adjusted R-squared for linear models:\n\n")
print(tbl)

}
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3.8 Testing the StepwiseRegAIC functions on the EPL data

3.8.1 Creating the package

The devtools package includes a number of functions that can be used to create a new R package.

# load the devtools package
library(devtools)

## Loading required package: usethis

To create the StepwiseRegAIC package, the create function was first used. This creates a path where the
package will be saved in the current working directory. Each of the functions defined above were saved in
individual R script files in the R folder created in the new package path.

Please note that the StepwiseRegAIC package has already been created, and the code used to create it does
not need to be executed in this R markdown file. Therefore, the remaining code chunks in section 3.8.1 are
not evaluated in this file.

# create new package
create("StepwiseRegAIC")

The header comments included above the definition of each of the functions above were written in a format
that can be interpreted by the roxygen2 package. This package is used to generate help documentation files
for package functions. After loading the roxygen2 package, functioning R help files can be generated for
each function in the StepwiseRegAIC package using the document function.

# load roxygen2 package and create documentation for the new package
library(roxygen2)
document("StepwiseRegAIC")
# check if the package has any errors when built

The check function can then be used to test the building of a package, and detect any errors with the package
or any warnings to be considered. Once the package is confirmed to have no errors, the build function can
be used to create a tar.gz package. This package can then be shared and installed on another platform.

Once the package is saved in the current working directory of the development environment being used, it
can be installed using the install function, with the type argument set to ‘source’.

# check if the package has any errors when built
check("StepwiseRegAIC", manual = TRUE, check_dir = getwd())
# build the package (create tar.gz package)
build("StepwiseRegAIC")
# install the package
install("StepwiseRegAIC", type="source")
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3.8.2 Viewing function help files

Once the StepwiseRegAIC package has been loaded, it is possible to view the help file for any of the functions
by typing ‘?’ followed by the function name. R markdown files don’t display R help files by default, but the
printr package can be loaded to display the content of these help files in a markdown file when requested.

The content of the R help file for the fwdAIC function is displayed below using the command ?fwdAIC.

library(StepwiseRegAIC)
library(printr)

## Registered S3 method overwritten by ’printr’:
## method from
## knit_print.data.frame rmarkdown

?fwdAIC

## Forward Stepwise AIC Regression
##
## Description:
##
## Determines the best predictor variables to include in a linear
## regression model for a given response variable using forward
## stepwise AIC regression.
##
## Usage:
##
## fwdAIC(my_df, response_var)
##
## Arguments:
##
## my_df: Data frame containing the response variable and all predictor
## variables to be considsered for the linear regression model.
##
## response_var: String corresponding to the response variable to be used
## for the model. String must match the name of the appropriate
## column in ’my_df’ exactly.
##
## Value:
##
## Object of AICmod class. Includes the best predictor variables
## determined for the model, and AIC and adjusted R-squared values
## for each tested iteration of the model.
##
## Examples:
##
## y <- rnorm(20) + 1:20
## X1 <- rnorm(20) + seq(0,8, length.out = 20)
## X2 <- rnorm(20) + seq(50,1, length.out = 20)
## X3 <- rnorm(20)
## df1 <- data.frame(X1, X2, X3, y)
## fwdAIC(df1, "y")
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When the ?fwdAIC command is used within a development environment such as RStudio, the correctly
formatted R help file is displayed.

An image of the help file produced using the command ?fwdAIC in RStudio is displayed below.
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3.8.3 Testing the StepwiseRegAIC package functions

Now that the StepwiseRegAIC package has been loaded into the current file, it is possible to test its functions
on the English Premier League data from part 1.

For example, if we wanted to create a multiple linear regression model for the available English Premier
League data to predict the number of goals scored by the home team for a given game, we could use the
fwdAIC function to estimate the best combination of predictor variables that would produce the best model.

Only the first 14 columns of the EPL data frame will be used in the following tests. This is because the
additional columns in the EPL data frame were created during the data analysis in part 1, so we will only
consider the original 14 columns in the data set.

The fwdAIC function is called below with the first 14 columns of the EPL data frame used as the data
frame input argument, and “HomeGoals” used as the response variable input argument. The ‘AICmod’
class object returned by the fwdAIC function is saved to an object called AICmod_obj.

# call fwdAIC function, save returned AICmod object to 'AICmod_obj
AICmod_obj<- fwdAIC(EPL[1:14], "HomeGoals")

To test the print function for the ‘AICmod’ class object, which was overwritten by the print.AICmod function,
we can either call the AICmod_obj object directly, or explicitly call the print function, as done below.

As shown from the output, the print function prints the formula of the final chosen model, the number of
predictor variables chosen, a list of the predictor variables chosen, the response variable used, and the AIC
and adjusted R-squared values calculated for the final model.

print(AICmod_obj)

##
## Final Model Formula:
## HomeGoals ~ Result + AwayGoals + HomeTotalShots + HomeTeam + HomeYellowCards + AwayFoulsAgainst + AwayRedCards
##
## number of predictor variables chosen:
## 7
##
## Predictor Variables Chosen:
## * Result
## * AwayGoals
## * HomeTotalShots
## * HomeTeam
## * HomeYellowCards
## * AwayFoulsAgainst
## * AwayRedCards
##
## Response Variable:
## * HomeGoals
##
## Final Model AIC Value:
## 7403.584
##
## Final Model R-Squared Value:
## 0.5977236
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The summary function for the ‘AICmod’ class object, which was overwritten by the summary.AICmod
function, can be tested by calling the summary function on the AICmod_obj object. As shown below, the
summary function prints the AIC and adjusted R-squared values obtained for each iteration of the stepwise
regression process, as well as the latest variable added to each iteration of the model.

summary(AICmod_obj)

## AIC and Adjusted R-squared for linear models:
##
## AIC Adj R^2
## Intercept term only 10786.93 0.000
## + Result 8750.22 0.415
## + AwayGoals 7650.72 0.562
## + HomeTotalShots 7467.33 0.583
## + HomeTeam 7438.67 0.594
## + HomeYellowCards 7420.06 0.596
## + AwayFoulsAgainst 7406.71 0.597
## + AwayRedCards 7403.58 0.598

The plot function for the ‘AICmod’ class object, overwritten by the plot.AICmod function, can be tested
by calling the plot function on the AICmod_obj object. The plot produced displays the AIC and adjusted
R-squared values for each iteration of the model created during the stepwise regression process.

As the AIC values and adjusted R-squared values are on significantly different scales, the y-axis on the left
hand side of the plot is used to display the AIC values scale, and the y-axis on the right hand side is used
to display the adjusted R-squared values scale. For clarity, the AIC values and scale are plotted in red, and
the adjusted R-squared values and scale are plotted in blue.

plot(AICmod_obj)

AIC and Adjusted R−squared Values for Linear Models
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Data Pro�ling Report
Basic Statistics

Raw Counts
Percentages

Data Structure
Missing Data Pro�le
Univariate Distribution

Histogram
Bar Chart (with frequency)
QQ Plot

Correlation Analysis
Principal Component Analysis

Basic Statistics
Raw Counts

Name Value

Rows 3,800

Columns 8

Discrete columns 3

Continuous columns 5

All missing columns 0

Missing observations 0

Complete Rows 3,800

Total observations 30,400

Memory allocation 170 Kb

Percentages

Data Structure
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root (Classes 'data.table' and 'data.frame': 3800 obs. of 8 variables:)

Team (chr)

Goals (int)

Result (chr)

Referee (chr)

TotalShots (int)

FoulsAgainst (int)

YellowCards (int)

RedCards (int)

Missing Data Pro�le
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Univariate Distribution
Histogram

Bar Chart (with frequency)
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QQ Plot

Correlation Analysis

## 2 features with more than 20 categories ignored! 
## Team: 36 categories 
## Referee: 33 categories
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Principal Component Analysis
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